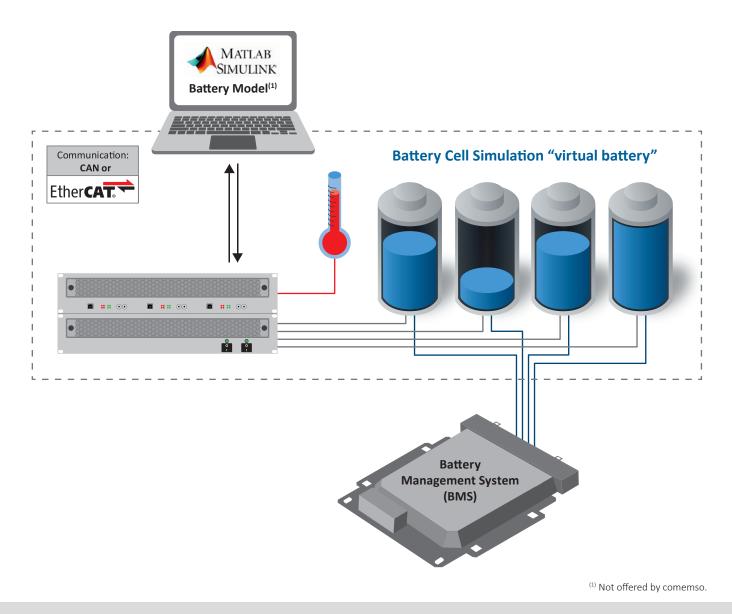
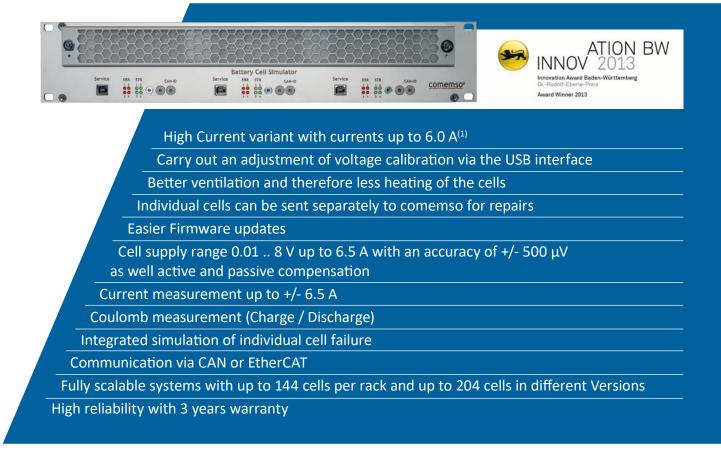


NEW GENERATION

BATTERY CELL SIMULATOR COMPACT

Generation 8





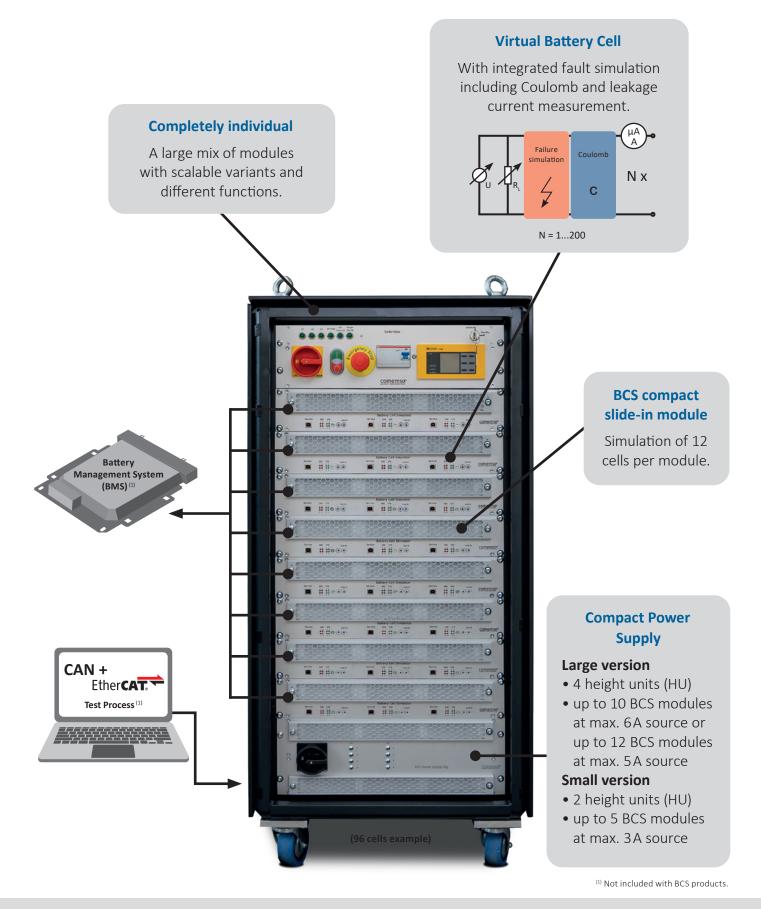
The new generation of the Battery Cell Simulator.

The generation 8 allows you to test your Battery Management System on cell-level with high-precision and more dynamic as ever before. The electrical emulation of such virtual battery cells puts you into the position to achieve safe, reproducable and full automated testing of your BMS. The Battery Cell Simulator is the core of every BMS test system. This product information gives you an overview of the BMS test product family and the available variants of the battery cell emulation hardware.

Set the voltage source and current load flexibly.

With the new generation of the battery cell simulator, even more precise functional tests of battery management systems are now possible. Each cell has an electronic load that can be used for active and passive balancing. This constant current sink can generate currents up to 6.0 A (depending on selected features). Even with a cable length of up to 5 m (16 ft), the comemso BCS delivers maximum accuracy directly on the BMS test object.

Fault simulation and current measurement.

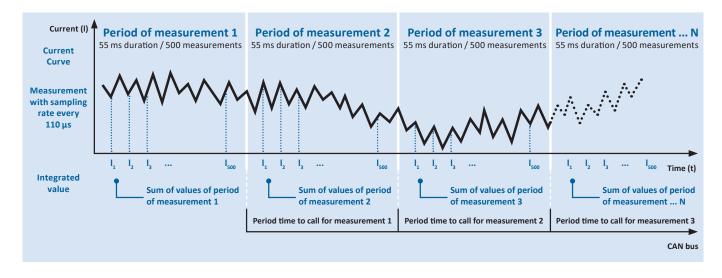

Each cell offers a fault simulation to generate short circuits, cable breaks and polarity changes (reverse polarity). In addition, each cell output has a high-precision current measurement system. This market innovation enables the BCS to measure both equalizing currents and leakage currents per cell, e.g. by a switched-off BMS.

In this way, deep discharges of entire battery modules can be analyzed quickly and with the help of the integrated Coulomb measurement, compensation processes can be verified for each cell. The entire communication for the high-performance measurements and the highly dynamic control, even with > 120 cells, takes place via CAN or EtherCAT with 100 MBit/s.

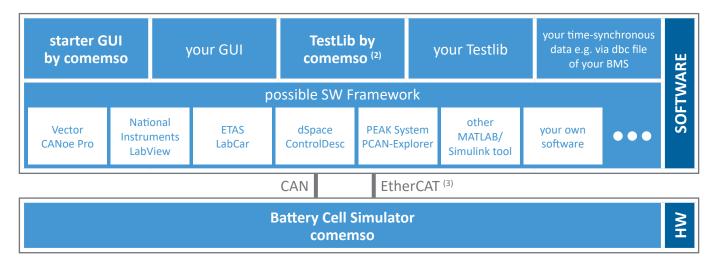
The comemso battery cell simulation combines high-precision emulation of battery cells with highresolution measurement technology and extended validation options.

 $^{(1)}$ without the μA board

Structure of a battery cell simulation system.


The Coulomb current measurement shortly explained.

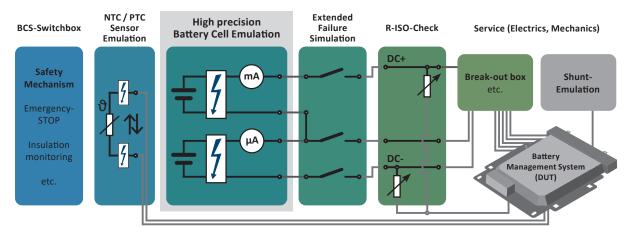
If you take a current measurement at a high frequency, but you only get a lower sample rate from your host PC to request these measurements, you lose important information, e.g. for the verification of your compensation algorithm⁽¹⁾.


To minimize this effect, the "Extended" version of the BCS cards has an internal integration of

current values which are measured every $110 \mu s$. In total, 500 measured values (=55 ms) are added. This result is converted into a physical value by means of calibration data and can then be read out via the CAN bus. The flag "Coulomb Measurement (NewValue)" in the CAN message is set to TRUE and after transmission back to FALSE.

Description of the Coulomb current measurement principle. (Charging/discharging measurement)

The basic system architecture with ideally matched hardware and software.



System architecture with worldwide established components in the automotive sector for a ready-to-use system with a short introduction effort. (1) from "Basic"-version and higher |(2) engineering service | (3) on demand

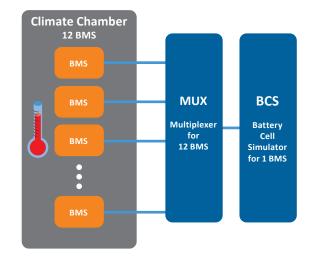
Integrated failure simulation for each cell.

No.	Test case failure simulation	Sketch	Realisation
1	 a) Connection of different cells to the BMS. b) Broken cell stack. Cause: a) Such as a sequenced connecting of the cells to the BMS by the ECU connector. b) Cable/connection breakage. 	Cell Controller / Monitor	BCS Cell Controller / Monitor
2	Short circuit of one cell. Cause: Defect of cell or failure on cell controller.	Cell Controller / Monitor	BCS Cell Controller / Monitor
3	Polarity change of a cell. Cause: Mistake in cabling.	Cell Cor troller / V onitor	BCS Cell Controller / Monitor

BMS test bench extendable by further failure insulation, measurements and emulation.

All solutions above are comemso products. Further information about the individual products can be found as a brochure at comemso.com or on request at sales@comemso.de.

Battery cell simulation especially for End-Of-Line (EOL) testing.



The focus of End-Of-Line tests are different from the conventional battery cell simulation, therefore comemso offers a special end-of-line version of its battery cell simulator. This type of tests requires a higher accuracy, as this process is also used for the calibration of BMS cell measurements. However, a lower dynamic range is also required, since the validation of the balancing algorithm is not the key focus. You will find the differences in the technical data.

Prepared for all climatic conditions.

The robustness of a BMS should not only be guaranteed under the best conditions, but also in rough climate situations. Battery Management Systems must ensure that all safety algorithms work, even in cold and hot areas or under salty or sandy conditions. Many Tier1s therefore include a climate chamber in their end-of-line tests to ensure that they can guarantee full performance under all conditions throughout the life of the EV.

A time-efficient production is very important, but the start-up of the climate chamber is time-consuming. Comemso therefore offers a cost effective solution where you can place up to 12 BMS in a climatic chamber, ramp up or down the temperature and perform all EOL tests shortly for one after the next BMS. To achieve this, a multiplexer (MUX) of the Battery Cell Simulator is used. This MUX is designed to maintain the high accuracy of cell emulation required for EOL testing.

The block diagram shows an example of 12 BMS as described in the table below. A custom number of BMS is also possible.

MUX configurations:

Quantity	Cells	FSU support	Channel A	Channel A+B ⁽¹⁾
3 BMS	24 200	٠	•	
6 BMS	24 200	٠	٠	•
12 BMS	24 200	٠	•	•

Note: Several customers also use comemso's MUX to extend full test automation of various BMS in the development stage.

(1) Channel B can be used to power the BMS (e.g. 11 pcs) to keep them "alive" while another BMS is being extensively tested.

Battery Cell Simulator for Development.

Technical data:

GENERAL	
Communication	CAN bus/EtherCAT
Temperature range	Lab conditions
Resolution on timing	500ns (Pulse and pause of PWM)
Connector	115V/230V or CEE 3 x 16A
Isolation cell/communication	2 kV
Isolation cell/cell	60V
Amount of cells	12204
Cells per rack	up to 144
Safety	Integrated emergency shutdown management
CELL SUPPLY SOURCE PER CELL	
Voltage range	0.018V
Nominal current	06.0A
DC Accuracy	+/-0.5 mV
Ripple	+/- 3 mV (fg = 5 kHz)
Step response 1 to 4V	ca. 0.3 ms
Step response 4 to 1V	1 10ms (depending on load)
Short-circuit-proof	yes
INTERNAL ELECTRONIC LOAD PE	R CELL
Nominal current	 05A basic 6A with HiCurrent variant
Resolution	$200\mu A$ (over CAN bus controlled)
Constant current	yes

ELECTRIC FAILURE SIMULATION F	PER CELL							
	 ▶ Broken wire ▶ Short circuit ▶ Polarity reversal 							
MEASUREMENT SYSTEM PER CEL	L [mA]							
Range	+/- 6.5A							
Accuracy	+/- 2 mA							
MEASUREMENT SYSTEM PER CELL [μΑ]								
Range	+/- 10mA							
Accuracy	+/- 10µA							
COULOMB MEASUREMENT PER	CELL (SINGLE MODE)							
Accuracy	+/- 3mA*0.1ms = +/- 3*10^-7As							
Resolution	+/- 0.2 mA*0.1ms = +/- 2*10^-8As							
Sampling time	110µs							
CAN resolution	1/10000mC							
Measurement range	+/- 6.5A							
Averaging	No averaging (integration is sufficient)							
Hardware filter (Baseboard rev. 7.2.6)	100 R, 47nF = 29µs							

Overview of variants:

Product variant	Light	Light + F	Basic	Basic + F	Basic + F + μA	Basic + F + HiCurrent	Full
Height	2 HU	2 HU	2 HU	2 HU	2 HU	2 HU	2 HU
Cells per module	12	12	12	12	12	12	12
Max. number of cells	204	204	204	204	204	204	204
Source ⁽¹⁾	1.0A	1.0A	5.0A	5.0A	5.0A	6.0A	6.0A
Sink ⁽¹⁾	1.0A	1.0A	5.0A	5.0A	5.0A	6.0A	6.0A
Fault simulation		•		•	•	•	٠
Current measurement µA					•		•
Current measurement +/- 5A	•	•	•	•	•	•	٠
Fast current measurement (Coulomb)			•	•	•	•	•
CAN-Baud rate 500kBd	•	٠	•	•	•	•	•
CAN-Baud rate 1MBd	•	•	•	•	•	•	•

(1) Sink and source: values can be reached separately – not in combination. Example: If sink has 2.0A setting, then the source is only max. 2.9A (4.9...2.0A)

Battery Cell Simulator for End-Of-Line Test.

Technical data:

GENERAL	
Communication	CAN bus/EtherCAT
Temperature range	Lab conditions
Connector	115V/230V or CEE 3 x 16A
Isolation cell/communication	2 kV
Isolation cell/cell	60V
Amount of cells	12 204
Cells per rack	up to 144
Safety	Integrated emergency shutdown management
CELL SUPPLY SOURCE PER CELL	
Voltage range	0.85 6.5V
Nominal current	05.0A
DC Accuracy	+/-0.3 mV
Ripple	+/- 3 mV (fg = 5 kHz)
Step response 1 to 4V	ca. 0.3 ms
Step response 4 to 1V	1 10ms (depending on load)
Short-circuit-proof	yes
INTERNAL ELECTRONIC LOAD PER	R CELL
Nominal current	0 5A basic
Resolution	$200\mu A$ (over CAN bus controlled)
Constant current	yes

ELECTRIC FAILURE SIMULATION PER CELL										
	 ▶ Broken wire ▶ Short circuit ▶ Polarity reversal 									
MEASUREMENT SYSTEM PER CEL	L [mA]									
Range	+/- 6.5A									
Accuracy	+/- 2 mA									
MEASUREMENT SYSTEM PER CELL [µA]										
Range	+/- 10mA									
Accuracy	+/- 10µA									
COULOMB MEASUREMENT PER	CELL (SINGLE MODE)									
Accuracy	+/- 3mA*0.1ms = +/- 3*10^-7As									
Resolution	+/- 0.2 mA*0.1ms = +/- 2*10^-8As									
Sampling time	110µs									
CAN resolution	1/10000mC									
Measurement range	+/- 6.5A									
Averaging	No averaging (integration is sufficient)									
Hardware filter (Baseboard rev. 7.2.6)	100 R, 47nF = 29µs									

Overview of variants:

Product variant	Light	Basic	Basic + F + μA
Height	2 HU	2 HU	2 HU
Cells per module	12	12	12
Max. number of cells	204	204	204
Source ⁽¹⁾	1.0A	5.0A	5.0A
Sink ⁽¹⁾	1.0A	5.0A	5.0A
Fault simulation			•
Current measurement µA			•
Current measurement +/- 5 A	•	•	•
Fast current measurement (Coulomb)		•	•
CAN-Baud rate 500 kBd	٠	•	•
CAN-Baud rate 1 MBd	•	•	•

(1)Sink and source: values can be reached separately – not in combination. Example: If sink has 2.0A setting, then the source is only max. 2.9A (4.9 ... 2.0A)

The modular Battery Cell Simulator - a little insight into possibilities.

ES France - Département Puissance Energie - 127 rue de Buzenval BP 26 - 92380 Garches Tél. 01 47 95 99 45 - Fax. 01 47 01 16 22 - e-mail: tem@es-france.com - Site Web: www.es-france.com

R-ISO Check

Full-Size BCS (two systems)

BATTERY CELL SIMULATOR COMPACT

Full-Size BCS

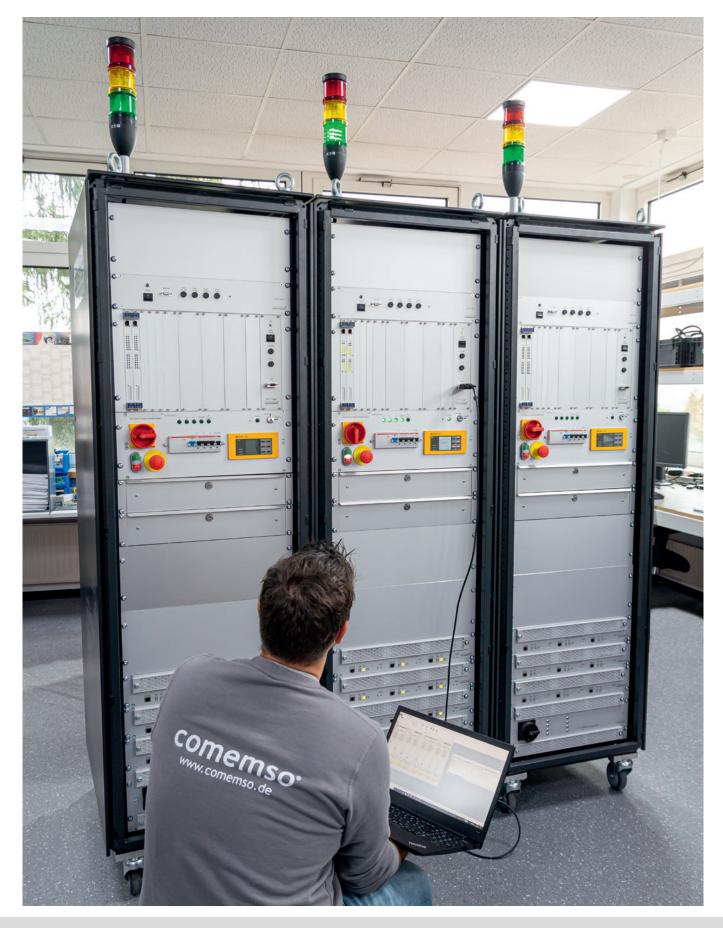
96 – 200 Cells or more + Temperature emulation etc.

Full-Size BCS 120 Cells + Customization

Mid-Size BCS 72 Cells + Temperature emulation etc.

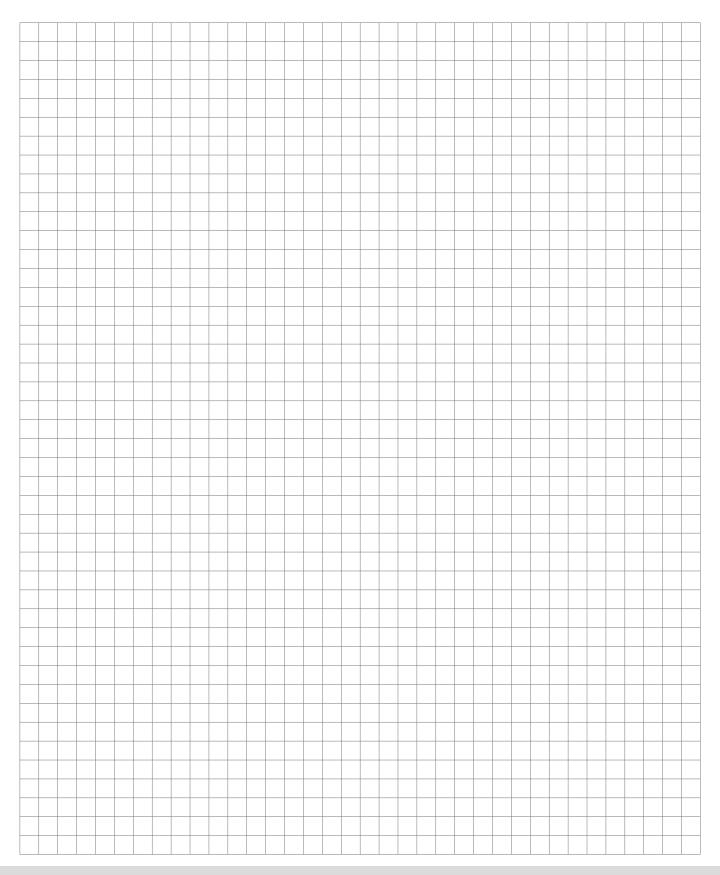
Full-Size BCS 2x 120 Cells = 240 Cells + Customization

Full-Size BCS 3x 96 Cells for End-Of-Line Test



Mid-Size BCS 60 Cells + Temperature emulation etc.

Mid-Size BCS 36 Cells + Customization, Extendable


Specification sheet for Battery Cell Simulator (BCS).

In order to provide you with the most accurate offer possible, we kindly ask you to answer the following questions about your technical requirements:

Company:	N	lame:	
Department:	N	Mail:	
Street:	F	hone:	
ZIP/City:		Country:	
A. I am a: 🗆 EV manufactor			
		tion / End of Line (EOL) test	
1. Cell simulation / emulation			
 a) How many cells should be sin b) Which balancing current is ne c) Equipment options: mA + Coulomb measure d) Connection to test device: Cable set (open wire) 	,	(passive balancing), in the lo	
		∐ Break-out-Bo	
2. Temperature simulation Amount of channels:	\Box with fault simulation		
3. Insulation resistance Changeable for isolation measu	rement test of DUT (Device un	der test): channels	
4. BMS current measurement test			
\Box by shunt emulation (-150mV	+150mV) □ by current sen	sor emulation (-6V +6V)	
5. Housing and components	_		
□ Rack / table system needed	-	customer's rack / table syste	
□ Switch box (with emergency Remarks:		th emergency stop etc.) and	insulation monitor
6. Control and communication sof			
a) Is a software needed?	PCAN CANoe	NI LabVIEW	ETAS LABCAR other:
b) Is a startup project needed?	□ dSpace ControlDesk □ for PCAN □ for CANoe □ for dSpace ControlDesk	□ for NI LabVIEW	☐ for ETAS LABCAR □ for other:
c) Needed interfaces?	□ CAN (incl.) □ EtherCAT (s		
d) Further requirements:			
7. Project conditions			
a) Number of test systems need	led?		
b) When does the project start	? c) W	/hat is you project budget? .	€/\$
d) Is there a specification?	□ Yes □ No If ye	es, please provide.	
e) Are other departments involved	ved in the project? 🛛 Yes	🗆 No	
	ersons?		
f) Who is the technical contact			
g) Who is the responsible purch			
h) Who releases the project fina			
i) Is a pilot installation planned?	Yes 🗆 No		
8. Is an extension planned in the	next 1-2 years?		

Space for your notes.

For details and individual configurations, please contact: sales@comemso.de

Space for your notes.

For details and individual configurations, please contact: sales@comemso.de

							 			 		 		 	 	-		
																-		
																-+		
							 						_					
																-		
																-+		
																-		
															 	\rightarrow	-	
							 								 	\rightarrow	-	
																-	\neg	

comemso GmbH Karlsbader Str. 13 D - 73760 Ostfildern Mail: sales@comemso.de Phone: +49 711 982 98-200

comemso