Product Overview

The Qorvo[®] QPF4206 is an integrated front end module (FEM) designed for Wi-Fi 6 (802.11ax) systems. The compact form factor and integrated matching minimizes layout area in the application.

Performance is focused on optimizing the PA for a 5V supply voltage that conserves power consumption while maintaining the highest linear output power and leading edge throughput. Receive path matches the optimal technologies to maximize Rx sensitivity through noise figure performance that is consistent over a wider variety of conditions.

Another key feature is the integration of a logarithmic power detector which enables power accuracy at lower powers.

The QPF4206 integrates a 2GHz power amplifier (PA), regulator, single pole two throw switch (SP2T), and a bypassable low noise amplifier (LNA).

Functional Block Diagram

QPF4206 Wi-Fi Front End Module

16 Pin 3x3 mm Laminate Package

Key Features

- 2412–2484 MHz
- POUT = +19dBm MCS11 HE40 -43dB Dynamic EVM
- Pout = +21dBm MCS9 VHT40 -35dB Dynamic EVM
- POUT = +22.5dBm MCS7 HT20 -30dB Dynamic EVM
- POUT = +25dBm MCS0 HT20 Spectral Mask Compliance
- Optimized for +5 V Operation
- 33 dB Tx Gain
- 2.1 dB Noise Figure
- 15 dB Rx Gain & 6 dB Bypass Loss
- 25 dB 5 GHz Rejection on Rx Path
- Broad Range Integrated DC Power Detector

Applications

- Access Points
- Wireless Routers
- Residential Gateways
- Customer Premise Equipment
- Internet of Things

Ordering Information

Part Number	Description
QPF4206SB	Sample bag with 5 pieces
QPF4206SQ	Sample bag with 25 pieces
QPF4206SR	7" reel with 100 pieces
QPF4206TR13-5K	13" reel with 5000 pieces
QPF4206EVB01	Assembled Evaluation Board

OPF4206R Data Sheet Brief 103119 | Subject to change without

QPF4206 Wi-Fi Front End Module

Handling Precautions

Parameter	Rating	Standard	
ESD – Human Body Model (HBM)	Class 1C(1kV)	ANSI/ESD/JEDEC JS-001	Caution!
ESD – Charged Device Model (CDM)	Class C3(1kV)	ANSI/ESD/JEDEC JS-002	ESD sensitive device
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Product uses RoHS Exemption 7c-I to meet RoHS Compliance requirements.
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2018 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

OPE4206B Data Sheet Brief 103119 | Subject to change without

www.gorvo.co

QPF4211 Wi-Fi 6 Front End Module

Product Overview

The Qorvo® QPF4211 is an integrated medium power front end module (FEM) designed for Wi-Fi 6 (802.11ax) systems. The small form factor and integrated matching minimizes layout area in the application.

Performance is focused on optimizing the PA for a 5V supply voltage, while providing optional operation over a wide range, that conserves power consumption while maintaining the highest linear output power and leading edge throughput. Receive path matches the optimal technologies to maximize Rx sensitivity through noise figure performance that is consistent over a wider variety of conditions.

Integrated die level filtering for 2nd and 3rd harmonics as well as 5 GHz rejection for DBDC operation are included. An DC power detector with a voltage output provides feedback.

The QPF4211 integrates a 2.4 GHz power amplifier (PA), regulator, single pole two throw switch (SP2T), bypassable low noise amplifier (LNA) and DC power detector into a single device.

Functional Block Diagram

Top View

16 Pad 2.5 x 2.5 mm Laminate Package

Key Features

- 2412-2484 MHz
- POUT = +19 dBm MCS11 HE40 -43dB Dynamic EVM
- POUT = +22.5 dBm MCS9 HT40 -35dB Dynamic EVM
- POUT = +23.5 dBm MCS7 HT20/40 -30dB Dynamic EVM
- POUT = +25.5 dBm MCS0 HT20 Spectral Mask Compliance
- Optimized for +5 V Operation while maintaining a wider range of capability
- 33 dB Tx Gain
- 1.8 dB Noise Figure
- 15 dB Rx Gain & 7 dB Bypass Loss
- 12 dB 5 GHz Rejection on Rx Path
- Integrated DC Power Detector

Applications

- Access Points
- Wireless Routers
- Residential Gateways
- Customer Premise Equipment
- Internet of Things

Ordering Information

Part Number	Description
QPF4211SB	Sample bag with 5 pieces
QPF4211SR	7" reel with 100 pieces
QPF4211TR13	13" reel with 10,000 pieces
QPF4211EVB	Assembled Evaluation Board

QOULO

QPF4211 Wi-Fi 6 Front End Module

Handling Precautions

Parameter	Rating	Standard	▲	
ESD – Human Body Model (HBM)	Class 2 (2000V)	ANSI/ESD/JEDEC JS-001		Caution!
ESD – Charged Device Model (CDM)	Class C3 (1000V)	ANSI/ESD/JEDEC JS-002		ESD sensitive device
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020		

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electroless Ni/Electroless Pd/Immersion Au (ENEPIG)

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Product uses RoHS Exemption 7c-I to meet RoHS Compiance requirements.
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- SVHC Free
- PFOS Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained in this Data Sheet and any associated documents ("Data Sheet Information") is believed to be reliable; however, Qorvo makes no warranties regarding the Data Sheet Information and assumes no responsibility or liability whatsoever for the use of said information. All Data Sheet Information is subject to change without notice. Customers should obtain and verify the latest relevant Data Sheet Information before placing orders for Qorvo® products. Data Sheet Information or the use thereof does not grant, explicitly, implicitly or otherwise any rights or licenses to any third party with respect to patents or any other intellectual property whether with regard to such Data Sheet Information itself or anything described by such information.

DATA SHEET INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Applications described in the Data Sheet Information are for illustrative purposes only. Customers are responsible for validating that a particular product described in the Data Sheet Information is suitable for use in a particular application.

© 2021 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc. | QORVO® is a registered trademark of Qorvo US, Inc.

Data Sheet Rev. C, February 2021

Product Overview

The Qorvo[®] QPF4216 is an integrated front end module (FEM) designed for Wi-Fi 802.11ax systems. The compact form factor and integrated matching minimizes layout area in the application.

Performance is focused on optimizing the PA for a 5V supply voltage that conserves power consumption while maintaining the highest linear output power and leading edge throughput. Receive path matches the optimal technologies to maximize Rx sensitivity through noise figure performance that is consistent over a wider variety of conditions.

The receive path is pinned out so external filtering can be added in the optimal position. Integrated die level filtering for 2nd and 3rd harmonics as well as 5 GHz rejection for DBDC operation are included.

A key feature is the integration of a logarithmic power detector which enables power control across the entire power spectrum for applications which use higher gain antennas or end users wanting to reduce device calibration time in production.

The QPF4216 integrates a 2.4 GHz power amplifier (PA), regulator, single pole two throw switch (SP2T), bypassable low noise amplifier (LNA) into a single device.

Functional Block Diagram

Top View

QPF4216 Wi-Fi Front End Module

24 Pin 5x3 mm Laminate (LGA) Package

Key Features

- 2400-2500 MHz
- P_{OUT} = +22 dBm MCS11 HE40 -43 dB Dynamic EVM
- Pout = +24 dBm MCS8/9 VHT40 -35 dB Dynamic EVM
- P_{OUT} = +25 dBm MCS7 HT20/40 -30 dB Dynamic EVM
- Pout = +26 dBm MCS0 HT20 Spectral Mask Compliance
- Optimized for +5 V Operation
- 32 dB Tx Gain
- 1.8 dB Noise Figure
- 15.5 dB Rx Gain & 7 dB Bypass Loss
- 15 dB 5 GHz Rejection on Rx Path
- Integrated Quasi-Log Power Detector

Applications

- Access Points
- Wireless Routers
- Residential Gateways
- Customer Premise Equipment
- Internet of Things

Ordering Information

Part Number	Description
QPF4216SB	Sample bag with 5 pieces
QPF4216SQ	Sample bag with 25 pieces
QPF4216SR	7" reel with 100 pieces
QPF4216TR13-5K	13" reel with 5,000 pieces
QPF4216EVB-01	Assembled Evaluation Board

OPF4216 Data Sheet 071219 I Subject to change without notice

ES France - Département RF & Hyperfréquences - 127 rue de Buzenval BP 26 - 92380 Garches Tél. 01 47 95 99 60 - Fax. 01 47 01 16 22 - e-mail: hyper@es-france.com - Site Web: www.es-france.com

1 ~ f 🤈

QPF4216 Wi-Fi Front End Module

Handling Precautions

Parameter	Rating	Standard	
ESD – Human Body Model (HBM)	Class 1B (500V)	ANSI/ESD/JEDEC JS-001	Caution!
ESD – Charged Device Model (CDM)	Class C3 (1kV)	ANSI/ESD/JEDEC JS-002	ESD sensitive device
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any patter rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

QPF4216 Data Sheet 071219 | Subject to change without notice

2 of 2

QONO

QPF4219 Wi-Fi Front End Module

Product Overview

The Qorvo[®] QPF4219 is an integrated front end module (FEM) designed for Wi-Fi 5 (802.11ac) systems. The compact form factor and integrated matching minimizes layout area in the application.

Performance is focused on optimizing the PA for a 5V supply voltage that conserves power consumption while maintaining the highest linear output power and leading edge throughput. Receive path matches the optimal technologies to maximize Rx sensitivity through noise figure performance that is consistent over a wider variety of conditions.

The receive path is pinned out so external filtering can be added in the optimal position. Integrated die level filtering for 2nd and 3rd harmonics as well as 5 GHz rejection for DBDC operation are included.

The QPF4219 integrates a 2.4 GHz power amplifier (PA), regulator, single pole two throw switch (SP2T), bypassable low noise amplifier (LNA) and DC power detector into a single device.

Functional Block Diagram

24 Pin 5x3 mm Laminate Package

Key Features

- 2400-2500 MHz
- POUT = +24.5 dBm MCS8/9 VHT40 -35 dB Dynamic EVM
- POUT = +25.5 dBm MCS7 HT20/40 -30 dB Dynamic EVM
- POUT = +26.5 dBm MCS0 HT20 Spectral Mask Compliance
- POUT = +28 dBm 802.11b Spectral Mask Compliance
- Optimized for +5 V Operation
- 33 dB Tx Gain
- 1.9 dB Noise Figure
- 15.5 dB Rx Gain & 7 dB Bypass Loss
- 15 dB 5 GHz Rejection on Rx Path
- Integrated DC Power Detector

Applications

- Access Points
- Wireless Routers
- Residential Gateways
- Customer Premise Equipment
- Internet of Things

Ordering Information

Part Number	Description
QPF4219SB	Sample bag with 5 pieces
QPF4219SQ	Sample bag with 25 pieces
QPF4219SR	7" reel with 100 pieces
QPF4219TR13-5K	13" reel with 5,000 pieces
QPF4219EVB-01	Assembled Evaluation Board

OPF4219 Data Sheet Brief 031219 | Subject to change without notice 4 of a

QONO

QPF4219 Wi-Fi Front End Module

Handling Precautions

Parameter	Rating	Standard	
ESD – Human Body Model (HBM)	Class 1B (500V)	ANSI/ESD/JEDEC JS-001	Caution!
ESD – Charged Device Model (CDM)	Class C3 (1kV)	ANSI/ESD/JEDEC JS-002	ESD sensitive device
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any patter rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

OPF4219 Data Sheet Brief 031219 L Subject to change without notice _____ and a

QONVO

Product Overview

The Qorvo[®] QPF4230 is an integrated front end module (FEM) designed for Wi-Fi 6 (802.11ax) systems. The compact form factor and integrated matching minimizes layout area in the application.

Performance is focused on optimizing the PA for a 3.3V supply voltage that conserves power consumption while maintaining the highest linear output power and leading edge throughput. Receive path matches the optimal technologies to maximize Rx sensitivity through noise figure performance that is consistent over a wider variety of conditions.

Integrated die level filtering for 2nd and 3rd harmonics as well as 5 GHz rejection for DBDC operation are included. For power control feedback, a DC power detector which has voltage output has been integrated.

The QPF4230 integrates a 2.4GHz power amplifier (PA), regulator, single pole three throw switch (SP3T), low noise amplifier (LNA) and coupler into a single device.

Functional Block Diagram

Top View

QPF4230

Wi-Fi Front End Module

16 Pin 3x3 mm Laminate Package

Key Features

- 2412-2484MHz
- P_{OUT} = +14dBm MCS11 HE40 -43dB Dynamic EVM
- P_{OUT} = +17dBm MCS9 VHT40 -35dB Dynamic EVM
- P_{OUT} = +18dBm MCS7 HT20/40 -30dB Dynamic EVM
- P_{OUT} = +21dBm MCS0 HT20 Spectral Mask Compliance
- Optimized for +3.3V Operation
- 0.5W Power Consumption at P_{OUT} = +18dBm
- 33dB Tx Gain
- 2.1dB Noise Figure
- 15dB Rx Gain & 6dB Bypass Loss
- 15dB 5GHz Rejection on Rx Path
- Integrated DC Power Detector

Applications

- Access Points
- Wireless Routers
- Client Equipment
- Customer Premise Equipment
- Internet of Things

Ordering Information

Part Number	Description
QPF4230SB	Sample bag with 5 pieces
QPF4230SQ	Sample bag with 25 pieces
QPF4230SR	7" reel with 100 pieces
QPF4230TR13-5K	13" reel with 5,000 pieces
QPF4230EVB-01	Assembled Evaluation Board
	<u>.</u>

OPE4230 Product Brief 062419 | Subject to change without notice

QPF4230 Wi-Fi Front End Module

Handling Precautions

Parameter	Rating	Standard		Continue
ESD – Human Body Model (HBM)	Class 1B (750V)	ANSI/ESD/JEDEC JS-001		Caution
ESD – Charged Device Model (CDM)	Class C2b (750V)	ANSI/ESD/JEDEC JS-002	A.C.	ESD sensitive device
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020		

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any patter rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

OPE4230 Product Brief 062419 | Subject to change without notice

www.aorvo.com

QONO

QPF4288 Wi-Fi Front End Module

Product Overview

The Qorvo[®] QPF4288 is an integrated front end module (FEM) designed for Wi-Fi 6 (802.11ax) systems. The compact form factor and integrated matching minimizes layout area in the application.

Performance is focused on optimizing the PA for a 5V supply voltage that conserves power consumption while maintaining the highest linear output power and leading edge throughput. Receive path matches the optimal technologies to maximize Rx sensitivity through noise figure performance that is consistent over a wider variety of conditions.

The receive path is pinned out so external filtering can be added in the optimal position. Integrated die level filtering for 2nd and 3rd harmonics as well as 5 GHz rejection for DBDC operation are included.

There are two options for power detect, a DC power detector which has voltage output and an RF power detector with an RF output from a directional coupler.

The QPF4288 integrates a 2.4 GHz power amplifier (PA), regulator, single pole two throw switch (SP2T), bypassable low noise amplifier (LNA) and coupler into a single device

Functional Block Diagram

24 Pin 5x3 mm Laminate Package

Key Features

- 2400-2500 MHz
- P_{OUT} = +17 dBm HE40 -47dB Dynamic EVM
- P_{OUT} = +22 dBm HE40 -43dB Dynamic EVM
- P_{OUT} = +24.5 dBm MCS9 HT40 -35dB Dynamic EVM
- P_{OUT} = +26 dBm MCS7 HT20/40 -30dB Dynamic EVM
- P_{OUT} = +28 dBm MCS0 HT20 Spectral Mask Compliance
- Optimized for +5 V Operation
- 33 dB Tx Gain
- 1.7 dB Noise Figure
- 15.5 dB Rx Gain & 7 dB Bypass Loss
- >10dB 5 GHz Rejection on Rx Path
- Integrated RF Power Detector Coupler as well as DC Power Detector

Applications

- Access Points
- Wireless Routers
- Residential Gateways
- Customer Premise Equipment
- Internet of Things

Ordering Information

Part Number	Description
QPF4288SB	Sample bag with 5 pieces
QPF4288SQ	Sample bag with 25 pieces
QPF4288SR	7" reel with 100 pieces
QPF4288TR13-5K	13" reel with 5,000 pieces
QPF4288EVB-01	Assembled Evaluation Board

OPF4288 Data Sheet 092419 | Subject to change without notice

ES France - Département RF & Hyperfréquences - 127 rue de Buzenval BP 26 - 92380 Garches Tél. 01 47 95 99 60 - Fax. 01 47 01 16 22 - e-mail: hyper@es-france.com - Site Web: www.es-france.com

1 of 2

QPF4288 Wi-Fi Front End Module

Handling Precautions

Parameter	Rating	Standard	•	
ESD – Human Body Model (HBM)	Class 1B (500V)	ANSI/ESD/JEDEC JS-001		Caution!
ESD – Charged Device Model (CDM)	Class C2b (750V)	ANSI/ESD/JEDEC JS-002		ESD sensitive device
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020		

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Product uses RoHS Exemption 7c-I to meet RoHS Compiance requirements.
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

QPF7219 Wi-Fi integrated Front End Module

Product Overview

The Qorvo[®] QPF7219 is an integrated front end module (iFEM) designed for Wi-Fi 6 (802.11ax) systems which marries the advantages of active components with BAW filter technology. The compact form factor and integrated matching minimizes layout area in the application and greatly reduces the number of external components.

Performance is focused on optimizing the PA for a 5V supply voltage that conserves power consumption while maintaining the highest linear output power and leading edge throughput across all Wi-Fi channels 1 through 11 without need to reduce transmit power to meet the FCC regulatory limits. Receive path matches the optimal technologies to maximize Rx sensitivity through noise figure performance that is consistent over a wider variety of conditions.

The receive path is pinned out so external filtering can be added in the optimal position. Integrated die level filtering for 2nd and 3rd harmonics as well as 5 GHz rejection for DBDC operation are included.

The QPF7219 integrates a 2.4 GHz power amplifier (PA) with power detector, FCC bandedge BAW filter, regulator, transmit-receive switch (SP2T) and bypassable low noise amplifier (LNA) into a single device.

Functional Block Diagram

24 Pin 5x3 mm Laminate (LGA) Package

Key Features

- 2402-2472 MHz
- P_{OUT} = +25 dBm FCC Restricted Bandedge Compliance
- P_{OUT} = +20 dBm MCS11 HE40 -43 dB Dynamic EVM
- P_{OUT} = +22.5 dBm MCS9 VHT40 -35 dB Dynamic EVM
- P_{OUT} = +23.5 dBm MCS7 HT20/40 -30 dB Dynamic EVM
- P_{OUT} = +25 dBm MCS0 HT20 Spectral Mask Compliance
- Optimized for +5 V Operation
- 31 dB Tx Gain
- 2 dB Noise Figure
- 15.5 dB Rx Gain & 6.5 dB Bypass Loss

Applications

- Access Points
- Wireless Routers
- Residential Gateways
- WiFi Customer Premise Equipment
- Internet of Things

Ordering Information

Part Number	Description
QPF7219SB	Sample bag with 5 pieces
QPF7219SQ	Sample bag with 25 pieces
QPF7219SR	7" reel with 100 pieces
QPF7219TR13	13" reel with 2,500 pieces
QPF7219EVB-01	Assembled Evaluation Board

OPE7219 Data Sheet 060319 | Subject to change without notice

ES France - Département RF & Hyperfréquences - 127 rue de Buzenval BP 26 - 92380 Garches Tél. 01 47 95 99 60 - Fax. 01 47 01 16 22 - e-mail: hyper@es-france.com - Site Web: www.es-france.com

1 ~ f 🤈

QONO

QPF7219 Wi-Fi integrated Front End Module

Handling Precautions

Parameter	Rating	Standard	
ESD – Human Body Model (HBM)	Class 1C (1kV)	ANSI/ESD/JEDEC JS-001	Caution!
ESD – Charged Device Model (CDM)	Class C3 (1kV)	ANSI/ESD/JEDEC JS-002	ESD sensitive device
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any patter rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

OPE7219 Data sheet REV A. L. Subject to change without notice

QOUND

QPF7221 2.4GHz Wi-Fi Front End Module (iFEM)

General Description

The QPF7221 provides a complete integrated solution in a single front end module (FEM) for Wi-Fi 802.11b/g/n/ac/ax systems. The small form factor and integrated matching minimizes layout area in the application and greatly reduces the number of external components.

The FEM allows true 5V supply without any modifications to the supply lines and performance is a balance of maximizing on highest linear output power and leading edge throughput. The FEM also provides state of the art LTE coexistence Rx immunity for maximum range and coverage by integrating high performance temperature stable BAW filtering on receive chain.

The QPF7221 integrates a 2GHz power amplifier (PA), single pole two throw switch (SP2T) and bypassable low noise amplifier (LNA) and an Rx BAW filter into a single device.

Functional Block Diagram

22 Pad 3 x 4.5 x 1 mm Laminate Package

Product Features

- 2.4GHz Wi-Fi Channel 1 through 13
- Integrated Rx coexistence BAW with 40 dB rejection in LTE bands & 5GHz
- Pout = +22dBm MCS7 HT40 -30dB Dynamic EVM
- POUT = +21dBm MCS8 HT40 -35dB Dynamic EVM
- P_{OUT} = +18dBm MCS11 HE40 -43dB Dynamic EVM
- POUT = +25dBm MCS0 Spectral Mask Compliance
- Optimized for +5 V supply (supports 3.3V operation)
- 34 dB Tx Gain
- 2.0 dB Noise Figure
- 15 dB Rx Gain & 10.5 dB Bypass Loss

Applications

- Access Points
- Wireless Routers
- Residential Gateways
- Customer Premise Equipment
- Internet of Things

Ordering Information

Part No.	Description
QPF7221SB	Sample bag with 5 pieces
QPF7221SQ	Sample bag with 25 pieces
QPF7221SR	7" reel with 100 pieces
QPF7221TR13	13" reel with 5000 pieces
QPF7221PCK-01	Assembled Evaluation Board

Datasheet Brief revB 20180712 | Subject to change without notice

- 1 of 8 -

QPF7221 2.4GHz Wi-Fi Front End Module (iFEM)

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	Class 1C	ANSI/ESDA/JEDEC JS-001	Caution!
ESD-Charged Device Model (CDM)	Class C3	ANSI/ESDA/JEDEC JS-002	ESD-Sensitive Device
MSL-Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020	

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: NiAu

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sa

Tel: 1-844-890-8163

Web: www.gorvo.com

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

Datasheet Brief revB 20180712 | Subject to change without notice

- 2 of 8 -

www.gorvo.com

Product Overview

The Qorvo[®] QPF8248 is an integrated front end module (FEM) designed for Wi-Fi 5 (802.11ac) systems. The compact form factor and integrated matching minimizes layout area in the application.

Performance is focused on a balance of efficiency versus linear power that increases the range and throughput of connections. Control lines are reduced to a two pin scheme.

Integrated die level filtering for 2nd and 3rd harmonics as well as 5GHz rejection for DBDC operation are included.

The QPF8248 integrates a 2.4 GHz power amplifier (PA), single pole three throw switch (SP3T) and low noise amplifier (LNA) into a single device.

Functional Block Diagram

Top View

QPF8248 Wi-Fi Front End Module

16 Pad 2.3x2.3 mm Laminate Package

Key Features

- 2412-2484 MHz
- P_{OUT} = +17.5 dBm MCS8/9 VHT40 -35 dB Dynamic EVM
- Pout = +19 dBm MCS7 HT20/40 -30 dB Dynamic EVM
- P_{OUT} = +20 dBm 802.11g -28 dB Dynamic EVM
- P_{OUT} = +23 dBm 802.11b Spectral Mask Compliance
- Optimized for +3.3 V Operation
- Low Power Mode Enabled
- 28.5 dB Tx Gain
- 2.5 dB Noise Figure
- 13.5 dB Rx Gain & 1.4 dB Bypass Loss
- Integrated DC Power Detector

Applications

- Access Points
- Wireless Routers
- Residential Gateways
- Set-Top Boxes
- Customer Premise Equipment
- Internet of Things

Ordering Information

Part Number	Description
QPF8248SB	Sample bag with 5 pieces
QPF8248SQ	Sample bag with 25 pieces
QPF8248SR	7" reel with 100 pieces
QPF8248TR13	13" reel with 10,000 pieces
QPF8248PCK410	Assembled Evaluation Board + 5 pcs

OPE8248 Data Sheet 121818 | Subject to change without notice

ES France - Département RF & Hyperfréquences - 127 rue de Buzenval BP 26 - 92380 Garches Tél. 01 47 95 99 60 - Fax. 01 47 01 16 22 - e-mail: hyper@es-france.com - Site Web: www.es-france.com

1 ~f 7

Q0000

Absolute Maximum Ratings

Parameter	Conditions	Rating
DC Supply Voltage		-0.5 to +6 V
Control Voltage	PA_EN & PNA_EN	-0.5 to +V _{CC} V
Storage Temperature		-40 to 150 °C
Junction Temperature	MTTF > 0.7×10^{6} hours MTTF > 1.0×10^{6} hours	160 °C 150 °C
RF Input Power at TX_IN	Into 50 Ω Load for 802.11b/g/n/ac (No Damage), Transmit Mode	+12 dBm
RF Input Power at ANT	(No Damage), Receive LNA On Mode	+5 dBm
RF Input Power at ANT	(No Damage), Receive Bypass Mode	+25 dBm

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min.	Тур.	Max.	Units
Operating Frequency	2412		2484	MHz
Device Voltage (V _{CC} & V _{DD})	+3	+3.3	+4.2	V
Extended Device Voltage (V _{CC})	+3		+5.25	V
Control Voltage – High (PA_EN & LNA_EN)	+2.8	+2.95	Vcc	V
Control Voltage – Low (PA_EN & LNA_EN)	0		+0.2	V
T _{OPERATING} *	-40		+85	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions. * Toperative at package ground.

Electrical Specifications

Parameter	Conditions	Min.	Тур.	Max.	Units			
TRANSMIT (TX-ANT) HIGH POWER	Unless otherwise noted: V_{CC} =3.3V, T	Unless otherwise noted: V _{cc} =3.3V, T=+25°C, PA_EN=High, LNA_EN=Low						
Wi-Fi 5 VHT20/40 Output Power	11aa MCS2/0 2560AM	16.5	17.5		dBm			
Dynamic EVM				-35	dB			
Wi-Fi 4 HT20/40 Output Power	11n MCS7 6404M		19		dBm			
Dynamic EVM				-30	dB			
11g Output Power		19	20		dBm			
Dynamic EVM				-28	dB			
Margin to HT20 Spectral Mask	P _{OUT} = +21 dBm, 11n MCS0		3	0	dBc			
Margin to 802.11b Spectral Mask	P _{OUT} = +23 dBm, DSSS 1 Mbps		20	10	dBc			
Gain		27	28.5		dB			
Gain Flatness	Across any 40 MHz Channel	-0.25		+0.25	dB			
TX Port Return Loss			6		dB			
ANT Port Return Loss			15		dB			
Quiescent Current	RF Off		140	160	mA			
Operating Current	P _{OUT} = +17.5 dBm		190	225	mA			

OPE8248 Data Sheet 121818 | Subject to change without notice

www.gorvo.com

QOULO

QPF8248 Wi-Fi Front End Module

Parameter	Conditions	Min.	Тур.	Max.	Units	
	P _{OUT} = +23 dBm		275	310	mA	
2 nd Harmonics	P _{OUT} = +23 dBm 802.11b 1 Mbps		-25	-20	dBm/MHz	
3 rd Harmonics	P _{OUT} = +23 dBm 802.11b 1 Mbps		-40	-35	dBm/MHz	
ANT-RX Isolation			45		dB	
	RF Off		0.30		V	
DC Power Detect Voltage	P _{OUT} = +17.5 dBm		0.50		V	
	P _{OUT} = +23dBm		0.68		V	
TRANSMIT (ANT-RX) LOW POWER	Unless otherwise noted: V_{CC} =3.3V, T	=+25°C, PA	_EN=High	, LNA_EN=	High	
Wi-Fi 5 VHT20/40 Output Power	11ac MCS8/9 2560AM		12		dBm	
Dynamic EVM				-35	dB	
Gain			28		dB	
Gain Flatness		-0.25		+0.25	dB	
TX Port Return Loss			6		dB	
ANT Port Return Loss			10		dB	
Operating Current	P _{OUT} = +12 dBm		147		mA	
	P _{OUT} = +17.5 dBm		175		mA	
RECEIVE (ANT-RX) LNA ON MODE	Unless otherwise noted: V_{CC} =3.3V, T	=+25°C, PA	_EN=Low	, LNA_EN=I	ligh	
Gain			13.5		dB	
Gain Flatness Across any 40 MHz Channel		-0.2		+0.2	dB	
Out of Band Gain	f = 5150-5925 MHz		-7.5		dB	
Noise Figure			2.5	2.7	dB	
RX Port Return Loss			9		dB	
ANT Port Return Loss			4		dB	
Input P _{1dB}			-5.5		dBm	
Input IP3			+1		dBm	
Rx Operating Current			9		mA	
RECEIVE (ANT-RX) BYPASS MODE	Unless otherwise noted: V_{cc} =3.3V, T	「=+25°C, PA	_EN=Lov	, LNA_EN=	Low	
Bypass Loss			1.4		dB	
Loss Flatness Across any 40 MHz Channel		-0.1		+0.1	dB	
RX Port Return Loss			10		dB	
ANT Port Return Loss			10		dB	
Input P _{1dB}			+28		dBm	
Input IP3			+40		dBm	
GENERAL SPECIFICATIONS	Unless otherwise noted: V _{CC} =3.3V, T=+25°C					
FEM Leakage Current			11	20	μA	
PA_EN Control Current - High			225	400	μA	
LNA_EN Control Current - High			100	200	μA	
TX Output P _{1dB}	CW		+27		dBm	
Ramp ON/OFF Time	10<->90% Ref from Control Voltage to RF Power		200		nS	
PA Stability - Output VSWR	CW No Spurious above -41.25dBm/MHz		4:1			

OPF8248 Data Sheet 121818 | Subject to change without notice

www.aorvo.com

QPF8248 Wi-Fi Front End Module

Parameter	Conditions	Min.	Тур.	Max.	Units
Output Power Range		0		25	dBm
Thermal Resistance, θ_{jc}	Junction to case, MCS0 POUT		45		°C/W

Logic Truth Table

Mode	PA_EN	LNA_EN
Transmit – High Power	High	Low
Transmit – Low Power	High	High
LNA On	Low	High
Bypass	Low	Low

Evaluation Board Schematic and Layout

Bill of Material

Ref. Des.	Value	Description	Manuf.	Part number
-	-	Printed Circuit Board		
U1	-	2.4GHz Wi-Fi Front End Module	Qorvo	QPF8248
C6	1 μF	Capacitor, Chip, 10%, 10V, X5R, 0402	AVX/Kyocera	0402ZD105KAT2A
C4	1000 pF	Capacitor, Chip, 10%, 25V, X7R, 0201	Samsung E-M	CL03B102KA3NNNC
C1	4.7 µF	Capacitor, Chip, +80%/-20%, 10V, Y5V, 0805	Taiyo Yuden	CE LMK212 F475ZG-T
C3	10 pF	Capacitor, Chip, +/-0.5pF, 25V, C0G, 0201		
C2, C5	0.1 µF	Capacitor, Chip, 10%, 6.3V, X5R, 0201		
R1	3.9K Ω	Resistor, Chip, 5%, 1/20W, 0201	Kamaya, Inc	RMC1/20-392JPA15
L2	1.8 nH	Inductor, Chip, +/- 0.3nH, M/L, 0201	Taiyo Yuden	LG HK 0603 1N8S-T
L1	3.3 nH	Inductor, Chip, +/- 0.1nH, T/F, 0201	Murata	LQP03TG3N3B02D

OPE8248 Data Sheet 121818 | Subject to change without notice

www.aorvo.com

QPF8248 Wi-Fi Front End Module

Pin Configuration and Description

Top View

Pin Number	Label	Description
1	PDET	DC power detector. Provides an output voltage proportional to the RF output power level
2	NC	No electrical connection. It may be left floating or connected to ground.
3	VCC	1 st and 2 nd stage supply voltage
4	VCC	3 rd stage supply voltage
5	ТХ	RF input. Internally matched to 50 Ω and DC Blocked.
6	PA_EN	Input enable bias voltage (Regulated internally)
7	GND	Ground connection.
8	RX	RF output from the low noise amplifier or bypass. Internally matched to 50 Ω and DC blocked.
9	LNA_EN	LNA enable bias voltage
10	VCC	LNA and regulator supply voltage
11	NC	No electrical connection. It may be left floating or connected to ground.
12	GND	Ground connection.
13	NC	No electrical connection. It may be left floating or connected to ground.
14	NC	No electrical connection. It may be left floating or connected to ground.
15	GND	Ground connection.
16	ANT	RF bi-directional antenna port. Internally matched to 50 Ω . An external DC block is required.
Backside Paddle	GND	RF/DC ground. Use recommended via pattern to minimize inductance and thermal resistance. See PCB Mounting Pattern for suggested footprint.

OPE8248 Data Sheet 121818 J Subject to change without notice

5 of 7

www.aorvo.com

QPF8248 Wi-Fi Front End Module

Mechanical Information

Dimensions and PCB Mounting Pattern

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.5-2009.
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

OPE8248 Data Sheet 121818 | Subject to change without notice

www.aorvo.com

QPF8248 Wi-Fi Front End Module

Handling Precautions

Parameter	Rating	Standard	•	
ESD – Human Body Model (HBM)	Class 1C	ANSI/ESD/JEDEC JS-001		Caution!
ESD – Charged Device Model (CDM)	Class C3	ANSI/ESD/JEDEC JS-002		ESD sensitive device
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020		

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electroless Ni/Electroless Pd/Immersion Au (ENEPIG)

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2018 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

OPE8248 Data Sheet 121818 | Subject to change without notice

www.aorvo.com

RFFM4203

3.0V to 5.0V, 2.4GHz to 2.5GHz 802.11b/g/n/ac WiFi Front End Module

The RFFM4203 provides a complete integrated solution in a single front end module (FEM) for WiFi 802.11b/g/n/ac and Bluetooth® systems. The ultra-small form factor and integrated matching greatly reduces the number of external components and layout area in the customer application. This simplifies the total front end solution by reducing the bill of materials, system footprint, and manufacturability cost. The RFFM4203 integrates a 2.4GHz to 2.5GHz power amplifier (PA), low noise amplifier (LNA) with bypass mode, power detector coupler for improved accuracy, and some filtering for harmonic rejection. The device is provided in a 3mm x 3mm x 1.05mm, 16-pin package. This module meets or exceeds the RF front end needs of IEEE 802.11b/g/n/ac WiFi RF systems.

Functional Block Diagram

Ordering Information

RFFM4203SB	Standard 5 piece bag
RFFM4203SQ	Standard 25 piece bag
RFFM4203SR	Standard 100 piece reel
RFFM4203TR7	Standard 2500 piece reel
RFFM4203PCK-410	Fully assembled evaluation board w/ 5 piece bag

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

Package: Laminate, 16-pin, 3.0mm x 3.0mm x 1.05mm

Features

- Integrated 2.4GHz to 2.5GHz b/g/n/ac Amplifier, LNA with Bypass Mode, SP3T Switch, and Power Detector Coupler
- Single Supply Voltage 3.0V to 5V
- P_{OUT} = 21.5dBm, 5V <3% Dynamic EVM
- P_{OUT} = 19dBm, 3.3V <3% Dynamic EVM

Applications

- IEEE802.11b/g/n/ac WiFi Applications
- 2.4GHz to 2.5GHz ISM Band Solutions
- Portable Battery-Powered Equipment
- WiFi Access Points, Gateways, and Set Top Boxes

DS140710

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Supply Voltage (Continuous with No Damage)	5.4	V
DC Supply Current	500	mA
Operating Temperature Range	-40 to +85	°C
Storage Temperature	-40 to +150	°C
Maximum Tx Input Power into 50W Load	+10	dBm
Maximum Rx Input Power for both High Gain and Bypass Modes (No Damage)	+10	dBm
Moisture Sensitivity	MSL3	

_____ rfmd⋙

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

Devemeter	Specification			Unit	Condition	
Parameter	Min	Тур	Max	Unit		
Typical Condition 3.3V					Temperature = -10°C to +70°C, V _{CC} = 3.3V, PA_EN = High, P _{OUT} = 19dBm using an IEEE802.11n MCS7 waveform unless otherwise noted.	
Tx Performance - 11g/n/ac					Compliance with standard 802.11g/n/ac	
Frequency	2412		2484	MHz		
802.11n Output Power	18.5	19		dBm	802.11n HT20 and HT40 MCS7 at 25°C	
11n Dynamic EVM		2.5	3	%		
		-32	-30.5	dB		
802.11ac Output Power	16.5	17		dBm	802.11ac HT40 MCS9 at 25°C	
11ac Dynamic EVM		1.5	1.8	%		
			-35	dB		
Tx Performance - Spectral Mask						
802.11n Output Power		21		dBm	802.11n HT20 and HT40 MCS7 at 25°C	
802.11b Output Power		24		dBm	Meet 802.11b DSSS 1Mbps Spectral Mask	
General Tx Performance						
Second Harmonic		-24	-20	dBm/MHz	At P _{OUT} = 19dBm	
Third Harmonic		-50	-42	dBm/MHz		
Gain	25	27	29	dB		
Gain Variation Over Temp	-2		+2	dB		
Power Detect Voltage	0.11	0.125	.014	V	RF = off	
	0.7	0.8	0.9	V	At rated POUT	
Power Detect Accuracy	-2.0		+2.0	dB	Into 3:1 VSWR load at 25°C	
Input Return Loss - Tx_in pin		-13	-10	dB	In specified frequency band	
Output Return Loss at ANT pin		-15	-10	dB		
Operating Current		210	230	mA	At rated P _{OUT} 19dBm	
		195	215	mA	At rated P _{OUT} 17dBm	
Quiescent Current		170		mA	Nominal conditions; no RF applied	
Leakage Current		2	10	μA	V _{CC} = 3.3V, PA_EN = Low, C_RX = Low, LNA_EN = Low	
Power Added Efficiency		10.5		%	Nominal conditions	
Power Supply - V _{cc}	3.0	3.3	3.6	V		

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS140710

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices. Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of

Beneration	Specification		Unit	Condition	
Parameter	Min	Тур	Max	Unit	Condition
Typical Condition 3.3V (continued)					Temperature = -10°C to +70°C, V _{CC} = 3.3V, PA_EN = High, P _{OUT} = 19dBm using an IEEE802.11n MCS7 waveform unless otherwise noted.
VCONTROL High (PA_EN, C_RX, C_BT, LNA_EN)	2.8	3	V _{cc}	V	
VCONTROL Low (PA_EN, C_RX, C_BT, LNA_EN)	0		0.2	V	
Turn-on time from PA_EN edge			500	ns	Output stable to within 90% of final gain
Turn-off time from PA_EN edge			500	ns	
Stability	-25		24	dBm	No spurs above -47dBm into 4:1 VSWR
CW P1dB	26	27		dBm	Tx mode in 50% Duty Cycle
Rx Performance					Temperature = -10°C to +70°C, V _{DD} = 3.3V, C_RX = High, LNA_EN = High
Gain	11	13	15	dB	
NF		2.3	3	dB	In specified frequency band
RX Port Return Loss			-9.6	dB	
ANT Port Return Loss			-4	dB	
Input IP3	4	8		dBm	
Input P1dB	-6	-2		dBm	
I _{DD}		10	15	mA	
LNA_EN Control Current		30	75	μA	
Rx Bypass Mode					Temperature = -10°C to +70°C, V _{DD} = 3.3V, C_RX = Low, LNA_EN = Low
Insertion Loss	-8.5	-7.5	-6.5	dB	
RX Port Return Loss			-9.6	dB	
ANT Port Return Loss			-4	dB	
Input IP3	4	8		dB	
Input P1dB	-6	-2		dBm	
Typical Condition 5.0V					Temperature = -10°C to +70°C, V _{CC} = 5.0V, PA_EN = High, P _{OUT} = 21.5dBm using a IEEE802.11n MCS7 waveform unless otherwise noted.
Tx Performance - 11g/n/ac					Compliance with standard 802.11g/n/ac
Frequency	2412		2484	MHz	
802.11n Output Power	21	21.5		dBm	802.11n HT20 and HT40 MCS7 at 25°C
11n Dynamic EVM		2.5	3	%	
		-32	-30.5	dB	
802.11ac Output Power	17	18		dBm	802.11ac HT40 MCS9 at 25°C
11ac Dynamic EVM		1.5	1.8	%	
			-35	dB	
Tx Performance - Spectral Mask					
802.11n output power		22		dBm	802.11n HT20 and HT40 MCS7 at 25°C
802.11b output power		26		dBm	Meet 802.11b DSSS 1Mbps spectral mask

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice @ rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices. Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of

RFFM4203

	Specification					
Parameter	Min	Тур	Max	Unit	Condition	
Typical Condition 5.0V (continued)					Temperature = -10°C to +70°C, V _{CC} = 5.0V, PA_EN = High, P _{OUT} = 21.5dBm using a IEEE802.11n MCS7 waveform unless otherwise noted.	
General Tx Performance						
Second Harmonic		-20	-18	dBm/MHz	P _{OUT} = 21.5dBm	
Third Harmonic		-43	-38	dBm/MHz		
Gain	25	27	29	dB		
Gain variation over Temp	-2		+2	dB		
Power Detect Voltage	0.14	0.16	0.18	V	$P_{OUT} = 0$ dBm and also when RF = off	
Power Detect Accuracy	-2		+2	dB	Into 3:1 VSWR load at 25°C	
Power Detect Voltage	0.95	1.05	1.20	V	P _{OUT} = 21.5dBm	
Input Return Loss - Tx_in pin		-13	-10	dB	In specified frequency band	
Output Return Loss at ANT pin		-15	-10	dB		
Operating Current		260	290	mA	At rated 11n Pout	
		230	260	mA	At rated P _{OUT} 19dBm	
Quiescent Current		190		mA	Nominal conditions; no RF applied	
Leakage Current		2	10	μA	V_{CC} = 5V, PA_EN = low, C_RX = low, LNA_EN = low at 25°C	
VCONTROL High (PA_EN, C_BT, C_RX, LNA_EN)	2.8	2.9	5.0	V		
VCONTROL Low (PA_EN, C_BT, C_RX, LNA_EN)	0		0.2	V		
Turn-on time from PA_EN edge			500	ns	Output stable to within 90% of final gain	
Turn-off time from PA_EN edge			500	ns		
Stability	-25		24	dBm	No spurs above -47dBm into 4:1 VSWR	
CW P1dB	28.5	29.5		dBm	Tx mode in 50% duty cycle	
Rx Performance					Temperature = -10°C to +70°C, V _{DD} = 5.0V, C_RX = High, LNA_EN = High	
Gain	11.5	14	16	dB		
NF		2.3	3.0	dB	In specified frequency band	
RX Port Return Loss			-9.6	dB		
ANT Port Return Loss			-4	dB		
Input IP3	4	8		dBm		
Input P1dB	-6	-2		dBm		
IDD		10	20	mA		
LNA_EN Control Current		30	50	μA		
Rx Bypass Mode					Temperature = -10°C to +70°C, V _{DD} = 5.0V, C_RX = High, LNA_EN = Low	
Insertion Loss	-8.5	-7.5	-6.5	dB		
RX Port Return Loss			-9.6	dB		
ANT Port Return Loss			-4	dB		
Input IP3	4	8		dB		
Input P1dB	-6	-2		dBm		

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice @ rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices. Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of

RFFM4203

	Specification			11.54		
Parameter	Min	Тур	Max	Onit	Condition	
General Performance 3.3V and 5.0V						
Control Current						
C_RX and C_BT Current		0.5	1	μA		
PA_EN Current		30	50	μA		
Switch Control Speed			200	ns		
PA_EN Control Impedance		5.2		MΩ		
LNA_EN Control Impedance		7.4		MΩ		
C_RX Control Impedance		27		MΩ		
C_BT Control Impedance		27		MΩ		
ESD						
Human Body Model	500			V	EIA/JESD22-114A RF pins	
	1000			V	EIA/JESD22-114A DC pins	
Charge Device Model	250			V	JESD22-C101C all pins	
Thermal Resistance (Th-j)		46		°C/W	Vcc=3.3V; Pout=20dBm; 100% duty cycle	
		56		°C/W	Vcc=5V; Pout=22dBm; 100% duty cycle	
Junction Temperature (TJ)		118		°C	Vcc=3.3V; Pout=20dBm; 100% duty cycle	
		59		°C	Vcc=5V; Pout=22dBm; 100% duty cycle	
Maximum Input Power			12	dBm	Into 50 Ω , V _{CC} = 3.3V, 25°C	
Maximum Input Power			12	dBm	6:1 VSWR, V _{CC} = 3.3V, 25°C	
Maximum Input Power			5	dBm	10:1 VSWR, V _{CC} = 3.3V, 25°C	
Bluetooth (Both 3.3V and 5.0V)					Temperature = -10°C to +70°C, V _{DD} = 3.3V, 5.0V, C BT = High, unless otherwise noted	
Input/Output Power	25	30		dBm		
Insertion Loss		0.7	0.9	dB		
BT Port Return Loss			-9.6	dB		
ANT Port Return Loss			-9.6	dB		
Isolation						
ANT-BT; Tx Mode		18		dB	PA_EN = High, C_BT = Low, C_RX = Low, LNA_EN = Low	
ANT-BT; Rx Gain Mode		25		dB	PA_EN = Low, C_BT = Low, C_RX = High, LNA_EN = High	
ANT-BT; Rx Bypass Mode		20		dB	PA_EN = Low, C_BT = Low, C_RX = High, LNA_EN = Low	
ANT-RX; Tx Mode		35		dB	PA_EN = High, C_BT = Low, C_RX = Low, LNA_EN = Low	
ANT-RX; BT Mode		25		dB	PA_EN = Low, C_BT = High, C_RX = Low, LNA_EN = Low	
ANT Port Return Loss			-9.6	dB		

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS140710

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of

Switch Logic Control

Operating Mode	PA_EN	LNA_EN	C_RX	C_BT
Standby	Low	Low	Low	Low
802.11b/g/n/ Tx	High	Low	Low	Low
802.11b/g/n/ Rx Gain	Low	High	High	Low
802.11b/g/n/ Rx Bypass	Low	Low	High	Low
BT Rx/ Tx	Low	Low	Low	High

Note: High = 2.8V to VCC, Low = 0V to 0.2V

Applications Schematic

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 DS140710 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices. Inc. ("RFMD") for its use, nor for any infrincement of patents or other rights of

Pin Out

Package Drawing

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 DS140710 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices. Inc. ("RFMD") for its use, nor for any infrincement of patents or other rights of

RFFM4203

PCB Pattern

Note:

- 1. Shaded area represents Pin 1 location
- 2. Example of the number and size of vias can be found on the RFMD evaluation board layout.

Pin Names and Descriptions

Pin	Name	Description
1	PDET	Power detector voltage for Tx section. PDET voltage varies with output power. May need external decoupling for noise decoupling.
2	NC	No Connect. This pin is not connected internally. It can be left floating or connected to ground.
3	VCC	Supply voltage for the PA. See applications schematic for biasing and bypassing components.
4	VCC	Supply voltage for the PA. See applications schematic for biasing and bypassing components.
5	тх	RF input port for the 802.11b/g/n PA. Input is matched to 50Ω and DC block is provided internally.
6	PA_EN	Control voltage for the PA and Tx switch. See truth table for proper settings.
7	NC	No Connect. This pin is not connected internally. It can be left floating or connected to ground.
8	RX	RF output port for the 802.11b/g/n LNA. Input is matched to 50Ω and DC block is provided internally.
9	LNA_EN	Control voltage for the LNA. When this pin is set to a LOW logic state, the bypass mode is enabled.
10	VDD	Supply voltage for the LNA. See applications schematic for biasing and bypassing components.
11	вт	RF Bidirectional port for Bluetooth [®] . Input is matched to 50Ω and DC block is provided internally.
12	GND	Ground connection. This pin is not connected internally and can be left floating or connected to ground.
13	C_BT	Bluetooth [®] switch control pin. See Truth Table for proper level.
14	C_RX	Receive switch control pin. See Switch Truth Table for proper level.
15	GND	Ground connection. This pin is not connected internally and can be left floating or connected to ground.
16	ANT	RF bidirectional antenna port matched to 50Ω and DC block is provided internally.
Pkg Base	GND	Ground connection. The backside of the package should be connected to the ground plane through a short path, i.e., PCB vias under the device are recommended.