

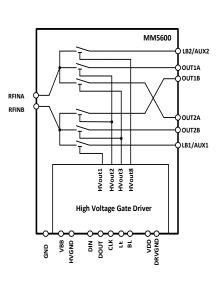
MM5600 - 40 Gbps DPDT Differential Switch with Integrated Driver

Product Overview

Description

Menlo Micro has developed a DPDT switch for high-speed differential signal switching. The MM5600 is based on Menlo's Ideal SwitchTM technology and can operate for digital signals up to 40 Gbps or RF signals up to 20 GHz for high-performance applications. The MM5600 has low insertion loss, fast switching speed, internal ESD diodes, and can operate with greater than three billion switching cycles. The MM5600's integrated driver is controlled by a serial-to-parallel interface that drives the high voltage gate lines of the switches. The design also offers two separate single-ended ports and a considerable 90% reduction in size when compared with comparable EM relay solutions. An external +5 V_{DC} logic supply and high voltage +89 V_{DC} bias source is required for operation of the internal switch driver.

Features


- DC to 20 GHz range, up to 40 Gbps
- Low Insertion Loss
- Integrated driver eliminates requirement for an external gate driver
- Independently controlled dual loopback ports
- High Reliability: Greater than 3 billion switching operations

Applications

- Differential High-Speed Switching
- ATE-Device Interface Boards
- High-Speed Computer Peripheral Interfaces

Markets

- Differential Component Testing
- Differential Signal Routing
- Test and Measurement

Electrical Characteristics

Operating Characteristics

Absolute Maximum Ratings

Exceeding the maximum ratings as listed in Table 1 below may reduce the reliability of the device or cause permanent damage. Operation of the MM5600 should be restricted to the limits indicated in Table 2 recommended operating conditions listed below.

Electrostatic Discharge (ESD) Safeguards

When handling the MM5600, observe precautions as with any other ESD sensitive device. Do not exceed the voltage ratings specified in Table 1 below.

Susceptibility to Latch-Up

The following power sequence is recommended to avoid latch-up.

- Power-Up: Apply VDD, set all inputs to known state, apply VBB
- Power-Down: Remove VBB, remove all inputs, remove VDD

The high voltage supply (VBB) may be applied and removed as required when VDD is present.

Table 1 Absolute Maximum Ratings 1

Parameter	Minimum	Maximum	Unit
Max RF Input Power @ 6 GHz Single Ended		+33	dBm
DC Current Rating / Switch		250	mA
Hot Switching Current @ 0.5 V ²		10	mA
Driver Voltage Supply VDD	-0.5	+6	V
High Voltage Gate Driver Supply VBB		+100	V
Driver Logic Input Levels	-0.5	VDD+0.5	V
Operating Temperature Range	-40	+85	٥C
Storage Temperature Range	-65	+150	۰C
Reflow Soldering (Pb Free) Peak temp		260	С
Reflow Soldering Time at Peak		30	Sec

¹ All parameters must be within recommended operating conditions. Maximum DC and RF power can only be applied during the on-state condition (cold-switched condition).

² Exceeding this specification may reduce cycle lifetime.

Hz

TBD

Vibration

ESD Rating HBM Driver Pins ³	750	V	
ESD Rating HBM RF I/O Pins⁴	2000	V	
Mechanical Shock	TBD	G	

Table 2 DC and AC Electrical Specifications

All specifications valid over full VBB range and operating temperature range unless otherwise noted.

Parameter	Minimum	Typical	Maximum	Unit
Operating Frequency Range Differential DPDT mode Single Ended mode	DC DC		20 12	GHz GHz
Max RF Power @ 3 GHz ⁵			33	dBm
Insertion Loss Differential mode @ 20 GHz Single Ended mode @ 12 GHz		4.5 2.5		dB
Input / Output Return Loss Differential mode @ 20 GHz Single Ended mode @ 12 GHz		10 10		dB
Isolation Differential mode @ 20 GHz Single Ended mode @ 12 GHz		20 23		dB
Signal Integrity Differential Crosstalk		TBD		dB

³ Driver pins include: CLK, BL, LE, DIN, DOUT, VBB, VDD.

⁵ Single Ended only 50 Ohms Measured at +85°C.

© 2021 Menlo Microsystems, Inc. | All Rights Reserved | www.menlomicro.com

⁴ RF I/O pins include: RFINA, RFINB, OUT1A, OUT1B, OUT2A, OUT2B, LB1/AUX1, LB2/AUX2.

Third-Order Intercept Point (IP3) ⁶		95		dBm
Second Harmonic (H2) ⁷		-130		dBc
Third Harmonic (H3) ⁸		-130		dBc
On / Off Switching Time				
Turn on time		8	15	μS
Turn off time		2	5	
Settling Time				
Settling time: on		8.5	16	μs
Settling time: off		2.5	6	
On / Off Switch Operations	3x10 ⁹	30x10 ⁹		Cycles
DC Steady State Switch Carry Current			250	mA
Off-State Leakage Current at 30 V _{DC}		10		
Off-State Leakage Current at 3.3V _{DC} ⁹		1		nA
On-State Resistance (Ron)		1.2		Ω
Driver Logic Supply Voltage (VDD)	4.5	5.0	5.5	V
Driver Logic Supply Current (IDD) ¹⁰			4	mA
Driver Input				
High-Level Logic Voltage V _{IH}	VDD-0.9V		VDD	V
Low-Logic Input Voltage V _I ∟	0		0.9	V
High-Logic Input Current I _{IH}			10	uA
Low-Logic Input Current I _{IL}			-350	uA
Driver Output				
High-Level Logic Output VoH11	VDD – 1V			V
Low-Level Logic Output VoL12			1	

 $^{^{12}}$ V_{OL} measured at ID_{OUT} = -0.1 mA.

⁶ Measured at +25°C and 37dBm input power.

⁷ Measured at 900MHz fundamental frequency and 30 dBm input power.

⁸ Measured at 900MHz fundamental frequency and 30 dBm input power.

⁹ Not measured but guaranteed by design.

¹⁰ Measured at Fclk = 8 MHz, LE = LOW.

 $^{^{11}}$ V_{OH} measured at ID_{OUT} = -0.1 mA.

High-Voltage Bias Supply Voltage (V _{BB}) ¹³	88	89	90	V _{DC}
High-Voltage Bias Supply Current (IBB)14			TBD	uA

¹⁴ Measured at $V_{BB} = 100V$ and no load.

¹³ Note that High-Voltage Bias must be applied to VBB. It is not part of the integrated driver.

Table 3 Driver Interface AC Electrical Specifications

Parameter	Minimum	Typical	Maximum	Unit
Clock Frequency fclk	0		8	MHz
Clock Width High and Low twL,twH	62			ns
Data Setup Time before Clock Rises t _{SU}	15			ns
Data Hold Time after Clock Rises t _H	30			ns
Latch Enable Pulse Width twle	80			ns
Latch Enable Delay Time after Rising Edge of Clock tole	35			ns
Latch Enable Setup Time before Clock Rises t _{SLE}	40			ns
Delay Time Clock to Data Low to High tolh			110	ns
Delay Time Clock to Data High to Low toHL			110	ns
All Logic Inputs t _r , t _f			5	ns

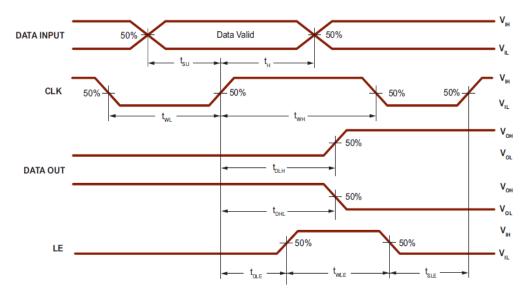


Figure 1: Driver Interface Timing Diagram

Functional Block Diagram

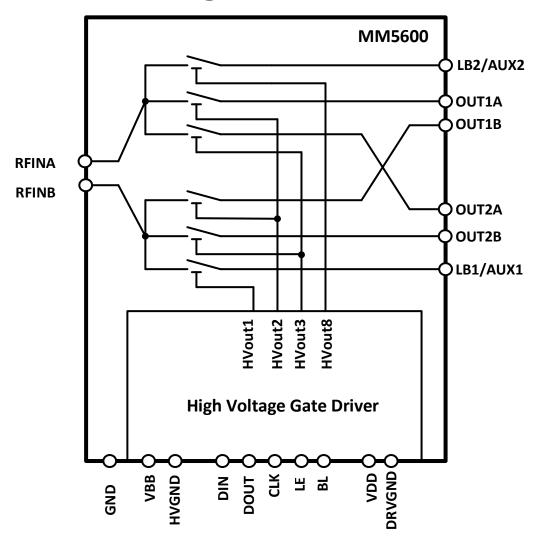


Figure 2: Functional Block Diagram

Package / Pinout Information

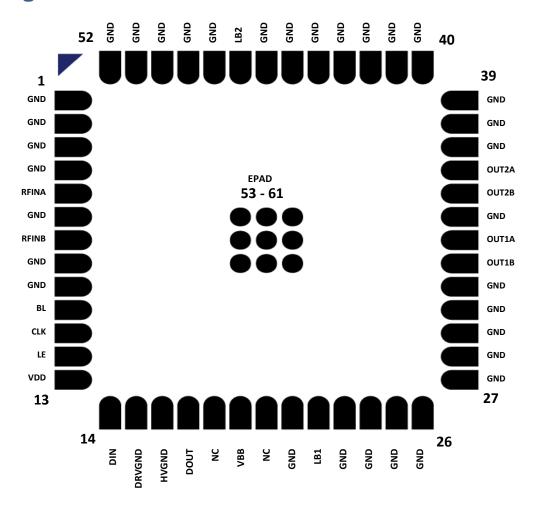


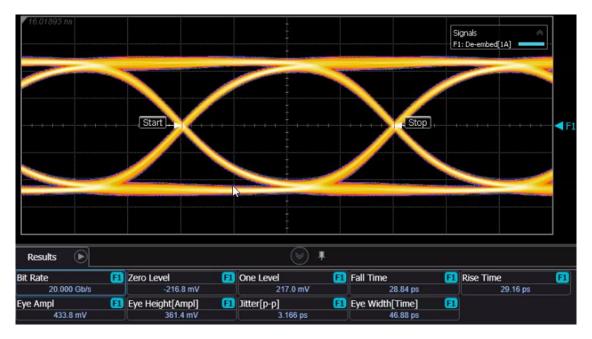
Figure 3: Top-Down Pin Layout

See Table 4 below for detailed pin description.

Table 4 Detailed Pin Description

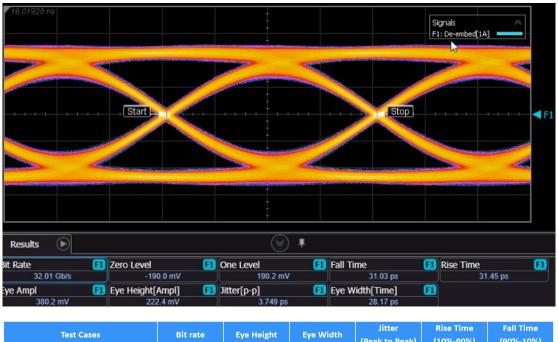
Pin #	Pin Name	Description
1,2,3,4,6,8,9,21,23,24,25,26,27,28,29,30 ,31,34,37,38,39,40,41,42,43,44,45,46,48 ,49,50,51,52	GND	RF Ground
53,54,55,56,57,58,59,60,61	EPAD	Tie these pins to GND
15	DRVGND	Driver Ground
16	HVGND	High Voltage Ground
11	CLK	Clock
10	BL	Blank
12	LE	Latch Enable
18,20	NC	No Connect
14	DIN	Data In
17	DOUT	Data Out
19	V _{BB}	High Voltage Supply
13	V_{DD}	Logic Supply Voltage
5	RFINA	Differential Input A
7	RFINB	Differential Input B
33	OUT1A	Differential Output 1A
32	OUT1B	Differential Output 1B
36	OUT2A	Differential Output 2A
35	OUT2B	Differential Output 2B
22	LB1/AUX1	Single-ended Output 1
47	LB2/AUX2	Single-ended Output 2

RF Performance


RF Performance – Differential Operation

TBD

Signal Integrity Performance (Measured)


Test conditions for measurements below are:

- 2¹⁵-1 PRBS signal
- PRBS output is 500mVp-p
- RF connector and RF traces are de-embedded
- Measured single-ended on MM5130 EVK

Test Cases	Bit rate	Eye Height	Eye Width	Jitter (Peak to Peak)	Rise Time (10%-90%)	Fall Time (90%-10%)
Baseline	19.965 Gbps	440.0 mV	48.16 ps	1.999 ps	14.99 ps	14.33 ps
MM5130 EVK	20.000 Gbps	361.4 mV	46.88 ps	3.166 ps	29.16 ps	28.84 ps

20 Gbps Eye Diagram, single-ended

(10%-90%) (90%-10%) (Peak to Peak) Baseline 31.990 Gbps 441.0 mV 28.435 ps 2.709 ps 14.31 ps 13.405 ps MM5130 EVK 32.000 Gbps 222.4 mV 28.17 ps 3.166 ps 31.45 ps 31.03 ps

32 Gbps Eye Diagram, single-ended

High Voltage Gate Driver Control

Operating Description

The integrated high voltage gate driver is controlled through a serial-to-parallel interface that drives the high voltage gate lines of the switches. Switch control data is shifted into an 8-bit shift register, latched, level translated, and applied as gate control signals as shown in block diagram Figure 3 below.

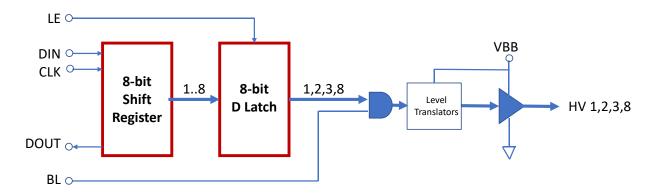


Figure 4: High Voltage Gate Driver Block Diagram

The gate driver is controlled by serial data input to DIN, sampled by CLK, latched by LE, and blanked by BL as follows:

- An 8-bit data byte is serially loaded into shift register bits 1-to-8 on the positive edge of CLK. Shift order is MSB first starting with bit 8.
- Parallel data from the shift register is transferred to the high voltage gate output buffers through an 8-bit D latch when the latch enable input LE is logically high. Transparent mode occurs when LE is held high while shifting data into the shift register.
- The MM5600 uses only four of the eight data bits latched for switch control. Bits 1, 2, and 3 and 8 correspond to high voltage gate lines HV1, HV2, HV3, and HV8 respectively. Bits 4,5,6 and 7 are not used. Data bits set to logical "1" close the corresponding switch to On and "0" open the switch to Off.
- Shift register data output pin DOUT may be used to cascade multiple devices by connecting DOUT of the first device to DIN of the next device. Other control signals should be shared between all the devices. In this case it is recommended to load 8-bit bytes consisting of 4 dummy bits and 4 switch control bits so that each byte controls one switch.
- There is no reset function. To clear register content, new data must be loaded.
- The blanking input BL will turn all gates off when logically low. The pin should be logically high for normal operation.
- Pins BL and LE have internal 20K ohm pull-up resistors to VDD. If blanking is not used, BL may be unconnected.

Table 5 Truth Function Table

		Inpu	ts		Shift Regi	ster	High Voltage Output HVx
Function	Data	CLK	LE	BL	1 2.	8	1 2 3 8
All off (blank)	Х	Х	Х	L		*	L L L L
Load Shift Register	H/L	1	L	Н	H or L *.	*	* * * *
Latched	Х	Х	L	Н		*	* * * *
Transfer	H/L	Х	Н	Н		*	H/L * * *

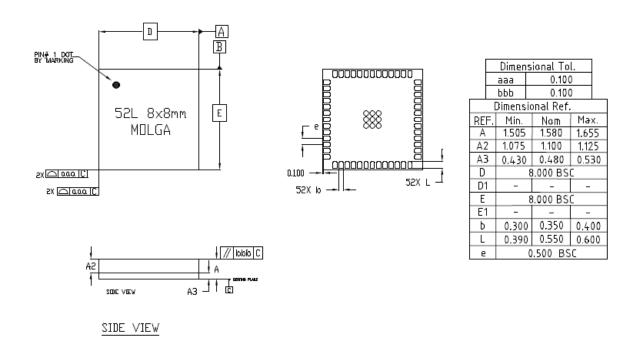
Note:

H = High logic level

L = Low logic level

X = Don't care logic level

↑ = Low to high logic transition


Each switch is individually controllable. In Table 6 below, primary usage states are highlighted in **bold**. Multiple branches may be closed simultaneously, however RF performance is not specified for such states. Note that On= Closed, Off = Open.

^{* =} Dependent on the previous stage's state before the last CLK or last LE high

Table 6 Applied Gate Voltage vs. RF Switch States

HV1	HV2	HV3	HV8	RFINA	RFINA	RFINA – LB1/AUX1	RFINB	RFINB	RFINB – LB2/AUX2
				OUT1A	OUT2A	LD I/AOX1	OUT1B	OUT2B	LDZIAOAZ
	•	•	VDD	Off	Off	Off	Off	Off	0
0	0	0	VBB	Off	Off	Off	Off	Off	On
0	0	VBB	0	Off	On	Off	Off	On	Off
0	VBB	0	0	On	Off	Off	On	Off	Off
VBB	0	0	0	Off	Off	On	Off	Off	Off
0	0	0	0	Off	Off	Off	Off	Off	Off
				0	ther valid	d states			
0	0	VBB	VBB	Off	On	Off	Off	On	On
0	VBB	0	VBB	On	Off	Off	On	Off	On
0	VBB	VBB	0	On	On	Off	On	On	Off
VBB	0	0	VBB	Off	Off	On	Off	Off	On
VBB	0	VBB	0	Off	On	On	Off	On	Off
VBB	VBB	0	0	On	Off	On	On	Off	Off
VBB	VBB	0	VBB	On	Off	On	On	Off	On
VBB	VBB	VBB	0	On	On	On	On	On	Off
VBB	VBB	VBB	VBB	On	On	On	On	On	On
0	VBB	VBB	VBB	On	On	Off	On	On	On
VBB	0	VBB	VBB	Off	On	On	Off	On	On

Package Layout

Package Options and Ordering Information

Part Number	ECCN	Package	Temperature Range
MM5600-01	EAR99	DC-40Gbps - DPDT - 8mm x 8mm	
		LGA (for semi test/ATE applications)	
MM5600-EVK1	EAR99	Evaluation board for MM5600	
		(differential crossover mode,	
		w/Southwest connector-QTY-8) DC-	
		40Gbps - DPDT - 8mm x 8mm BGA	
MM5600-EVK2	EAR99	Evaluation board for MM5600	
		(DPDT single-ended mode,	
		w/Southwest connector-QTY-8) DC-	
		40Gbps - DPDT - 8mm x 8mm LGA	

Important Information

Disclaimer

The data presented in this document is for informational purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Any warranty or license for this product shall be specified and governed by the terms of a separate purchase agreement. Menlo Micro does not assume any liability arising out of the application or use of this product; neither does it convey any license under its patent rights, nor the rights of others.

Menlo Micro reserves the right to make changes in these specifications and features shown herein to improve reliability, function and design, or discontinue of this product, at any time without notice or obligation. Contact our product representative for the most current information.

Warning

This product is not authorized for use:

- 1) In any life support systems.
- **2)** Applications for implanting into the human body, without the express written approval from Menlo Micro.

Trademark Notices

All trademarks and product service marks are owned by Menlo Microsystems, Inc.

Contact Information

Please contact Menlo Micro for the latest specifications, additional product information, test and evaluation boards, product samples, worldwide sales and distribution locations:

Internet: www.menlomicro.com
E-mail: sales@menlomicro.com

For product technical questions and application information: support@menlomicro.com.