

Probe assemblies

Series/Type: Aluminum pipe metal clip-on sensors, HP100

Ordering code: B58101A0109A000

Date: 2022-06-20

Version: 1.0

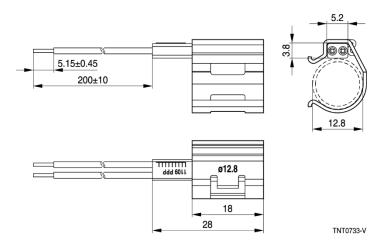
[©] TDK Electronics AG 2022. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without TDK Electronics' prior express consent is prohibited.

B58101A0109A000

Probe assemblies

Aluminum pipe metal clip-on sensors, HP100

Application


- Automotive HVAC / xEV: Thermal management
- Pipe surface temperature measurement (heat pump / battery cooling)

Features

- Strong humidity resistance
- High temperature resistance up to 150 °C
- High sensor accuracy at both minimum and maximum temperatures
- Fast response time
- Good insulation resistance
- Specific RT curve optimized for application
- Coated stainless steel clip for no corrosion when in contact with aluminum pipes
- For 12.8 mm (½") diameter aluminum pipe surface temperature measurement
- Qualified to AEC-Q200

Options

- Different wire lengths on request
- Different clip diameters on request (8 mm to 20 mm available)
- Different NTC R/T characteristics on request
- Different packaging sizes on request
- Available with connector (sealed / non-sealed)

For details refer to technical drawing B58101A0109A000, Ind. 02 dated 2022-02-22.

Delivery mode

- Cardboard box 100 pieces

Ordering code

- B58101A0109A000

B58101A0109A000

Probe assemblies

Aluminum pipe metal clip-on sensors, HP100

Technical data and specification

Climatic category (IEC 60068-1)			40/150/25
Lower category temperature		°C	-40
Upper category temperature		°C	150
Rated resistance R _R // Tolerance	$R_R // \Delta R_R / R_R$	Ω // %	1072 // ± 1
Rated temperature	T _R	°C	85
Resistance at 25 °C	R ₂₅	Ω	10000
B-value B _(25/100) // Tolerance	B _R	K // %	3988 // ± 1
R/T curve no.			8016
Thermal time constant (in water)	τ ₆₃	S	< 7
Max. power rating (at 25 °C)	P ₂₅	mW	60
Insulation resistance (500 V _{DC} for 60 s)	R _{ins}	ΜΩ	>100
Voltage proof (t = 10 s)	V _{test}	V_{AC}	1250
Sensor accuracy (-15 °C ≤ T ≤ 140 °C)	ΔΤ	K	< ±1
Sensor accuracy	Δ_{Tmax}	K	±1.2

Wire harness information

Wire temperature class	HT (-40 to 150 °C)
Wire length	200 mm
Wire Insulation color	Red
Wire outer diameter	1.2-1.3 mm

Remarks

- Sensors must be stored in original package prior to assembly
- The installation of cover materials is the customer's responsibility. TDK does not control
 the thermodynamic properties of the interface, the size and shape of any wrapping or the
 consistency of the wrapping. The performance of the component can be affected by
 debris and surface finish and may be compromised by improper installation.

B58101A0109A000

Probe assemblies

Aluminum pipe metal clip-on sensors, HP100

Initial NTC element resistance / temperature curve

 R/T-Curve
 8016 / A01

 R at 25°C
 10000Ω

 B(25/100)
 $3988 K \pm 1\%$

 R_N at 85 °C
 $1072 \Omega \pm 1\%$

Temp. °C	R_{nom}	R_{min}	R_{max}	ΔR ±%	ΔT ±°C	α %/ K
-40	336500	312878	360122	7	1.1	6.7
-30	177000	165820	188180	6.3	1	6.2
-20	97070	91568	102572	5.7	1	5.8
-10	55330	52525	58135	5.1	0.9	5.4
0	32650	31176	34124	4.5	0.9	5.1
10	19900	19104	20696	4	0.8	4.8
20	12490	12050	12930	3.5	8.0	4.5
25	10000	9671.0	10329	3.3	0.7	4.4
30	8057.0	7810.0	8304.0	3.1	0.7	4.3
40	5327.0	5186.0	5468.0	2.7	0.7	4
50	3603.0	3522.0	3684.0	2.3	0.6	3.8
60	2488.0	2441.0	2535.0	1.9	0.5	3.6
70	1752.0	1725.0	1779.0	1.5	0.5	3.4
80	1258.0	1243.0	1273.0	1.2	0.4	3.2
85	1072.0	1062.0	1083.0	1	0.3	3.2
90	917.70	906.70	928.70	1.2	0.4	3.1
100	680.00	669.80	690.20	1.5	0.5	2.9
110	511.20	502.10	520.30	1.8	0.6	2.8
120	389.30	381.40	397.20	2	0.8	2.7
130	300.90	294.00	307.80	2.3	0.9	2.5
140	234.80	228.90	240.70	2.5	1	2.4
150	185.30	180.20	190.40	2.8	1.2	2.3

B58101A0109A000

Probe assemblies

Aluminum pipe metal clip-on sensors, HP100

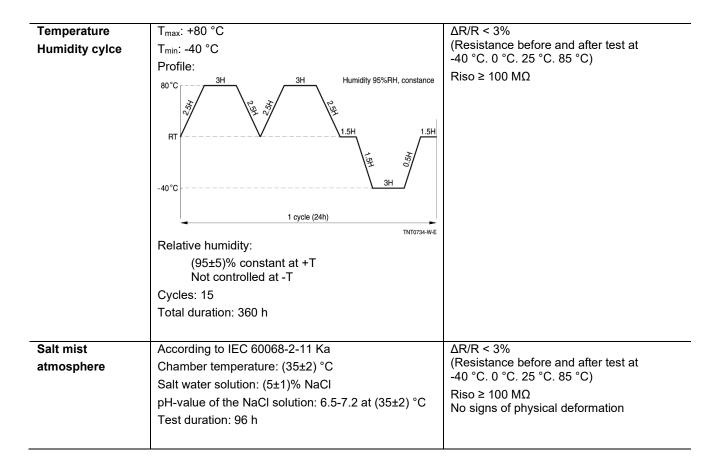
Reliability data

Tests	Description/ Reference	Criteria
ELECTRICAL TES	 STS	
Resistance / Temperature check	Take measurements at specified temperatures in oil bath	Resistance at -40 °C. 0 °C. 25 °C. 85 °C. Resistance readings within min/max values listed in RT charts.
Response time	Response time of the sensor in a transition from Ti=10 °C to Tf =35 °C (in water)	τ 63 < 7 s
Insulation resistance	Tested between the housing of the temperature sensor and terminals. Sensor head is immersed into a water solution containing 5% NaCl. Test voltage = 500 V DC Rise / fall time: < 1 s Duration = 60 s	100 MΩ or more Δ R/R < 3% (Resistance before and after test at -40 °C. 0 °C. 25 °C. 85 °C)
High voltage test	Analog to insulation resistance test: Voltage: 1250 V AC Rise / fall time: < 5 s Duration: 10 s	Leakage current < 10 mA No flash over ΔR/R < 3% (Resistance before and after test at -40 °C. 0 °C. 25 °C. 85 °C)
Electrostatic discharge	Levels: -Air discharge @ +/-4 kV // +/- 8 kV // +/-10 kV @150 pF / 330 Ω -Contact discharge @ +/-4 kV // +/- 8 kV @150 pF / 330 Ω Apply 10 pulses of each level and polarity	Δ R/R < 3% (Resistance before and after test at -40 °C. 0 °C. 25 °C. 85 °C) Riso ≥ 100 MΩ
MECHANICAL TE	STS	<u> </u>
Powered vibration	Frequency: 5 ~ 200 Hz Acceleration: 68 ~ 29 m/s² Vibration direction: x. y. z Sweep time/type: 20 min logarithmic Sweeps per axis: 18 Test duration: 6 h per axis U = (5 ± 0.25) V DC over pull-up resistor mounted on pipe	Δ R/R < 3% (Resistance before and after test at -40 °C. 0 °C. 25 °C. 85 °C) Riso ≥ 100 MΩ No signs of physical deformation
Mechanical shock	Acceleration: 300 m/s² Shock type: Half sine shocks 3 axis (6 shocks per axis) Duration: 18 ms mounted on pipe	Δ R/R < 3% (Resistance before and after test at -40°C. 0 °C. 25 °C. 85 °C) Riso ≥ 100 MΩ No signs of physical deformation
Lead pull test	Pull force on sensor side: 50 N	ΔR/R < 3% (Resistance before and after test at -40 °C. 0 °C. 25 °C. 85 °C) Riso ≥ 100 MΩ No signs of physical deformation

B58101A0109A000

Probe assemblies

Aluminum pipe metal clip-on sensors, HP100


ENVIRONMENTA	L TESTS	
Low temperature	Test temperature: -40 °C	ΔR/R < 3%
storage	Storage time: 72 h	(Resistance before and after test at
J	Not powered	-40 °C. 0 °C. 25 °C. 85 °C)
	'	Riso ≥ 100 MΩ
High temperature	Test temperature: +125 °C	ΔR/R < 3%
storage	Storage time: 72 h	(Resistance before and after test -40 °C. 0 °C. 25 °C. 85 °C)
	Not powered	Riso ≥ 100 MΩ
Low temperature	Test temperature: -40 °C	ΔR/R < 3%
operation	Storage time: 1000 h	(Resistance before and after test
-	$V = (5 \pm 0.25) V DC$ over pull-up resistor	-40 °C. 0 °C. 25 °C. 85 °C)
		Riso ≥ 100 MΩ
High temperature	Test temperature: +125 °C	ΔR/R < 3%
operation	Storage time: 1000h	(Resistance before and after test at
	$V = (5 \pm 0.25) V DC$ over pull-up resistor	-40 °C. 0 °C. 25 °C. 85 °C)
		Riso ≥ 100 MΩ
Heat Shock:	T _{max} : +125 °C	ΔR/R < 3%
Temperature	T _{min} : -40 °C	(Resistance before and after test at
cycling	t _{dwell} : 20 min	-40 °C. 0 °C. 25 °C. 85 °C) Riso ≥ 100 MΩ
	t _{transfer} : <30 s	RISO ≥ 100 MΩ
	n = 1000 cycles	
	Test media: air	
	Not powered	
Heat Shock:	T _{max} : +100 °C	ΔR/R < 5%
Shock resistance	T _{min} : 0 °C	(Resistance before and after test
	t _{dwell} @T _{min} : 2 min	-40 °C. 0 °C. 25 °C. 85 °C)
	t _{dwell} @T _{max} : 4 min	Riso ≥ 100 MΩ
	t _{transfer} : <30 s	
	n = 10000 cycles	
	Test media: galden	
	$V = (5 \pm 0.25)$ VDC over pull-up resistor	
	(0 ± 0.20) VBO OVOI pail up recietor	
Water resistance	IP Classification: IPX7	ΔR/R < 3%
		(Resistance before and after test at
		-40 °C. 0 °C. 25 °C. 85 °C)
		Riso ≥ 100 MΩ
Dust resistance	IP Classification: IP6KX	ΔR/R < 3%
		(Resistance before and after test at
		-40 °C. 0 °C. 25 °C. 85 °C)
		Riso ≥ 100 MΩ
Warm water	T _{min} : +80 °C	ΔR/R < 5%
immersion	t _{dwell} : 500 h	(Resistance before and after test at -40 °C. 0 °C. 25 °C. 85 °C)
	Test media: DI water	Riso ≥ 100 MΩ
	V = 0.3 V DC on NTC	1.100 = 100 19122

B58101A0109A000

Probe assemblies

Aluminum pipe metal clip-on sensors, HP100

B58101A0109A000

Probe assemblies

Aluminum pipe metal clip-on sensors, HP100

Cautions and warnings

Storage

- Store thermistors only in original packaging. Do not open the package prior to storage.
- Storage conditions in original packaging: storage temperature −25 °C to +45 °C. relative humidity ≤75% annual mean. <95% maximum 30 days per annum. dew precipitation is inadmissible.
- Do not store thermistors where they are exposed to heat or direct sunlight. Otherwise, the packing material may be deformed or components may stick together, causing problems during mounting.
- Avoid contamination of thermistor surface during storage handling and processing.
- Avoid storage of thermistors in harmful environments like corrosive gases (SOx. Cl etc).
- Use the components as soon as possible after opening the factory seals i.e. the polyvinyl-sealed packages.
- Solder thermistors within the time specified after shipment from TDK Electronics. For leaded components this is 24 months.

Handling

- NTC thermistors must not be dropped. Chip-offs or any other damage must not be caused during handling of NTCs
- Do not touch components with bare hands. Gloves are recommended.
- Avoid contamination of thermistor surface during handling.
- Washing processes may damage the product due to the possible static or cyclic mechanical loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts. which might lead to reduced reliability or lifetime.

Bending/ twisting leads

• A lead (wire) may be bent at a minimum distance of twice the wire's diameter plus 4 mm from the component head or housing. When bending ensure the wire is mechanically relieved at the component head or housing. The bending radius should be at least 0.75 mm.

Mounting

- Ensure that no thermo-mechanical stress occurs due to production processes (curing or over molding processes) when thermistors are sealed. potted or over molded or during their subsequent operation. The maximum temperature of the thermistor must not be exceeded. Ensure that the materials used (sealing/potting compound and plastic material) are chemically neutral.
- Electrodes/contacts must not be scratched or damaged before/during/after the mounting process.
- Contacts and housing used for assembly with the thermistor must be clean before mounting.
- Ensure that adjacent materials are designed for operation at temperatures comparable to the surface temperature of the thermistor. Be sure that surrounding parts and materials can withstand the temperature.
- Avoid contamination of the thermistor surface during processing.
- The connections of sensors (e.g. cable end. wire end. plug terminal) may only be exposed to an environment with normal atmospheric conditions.
- Tensile forces on cables or leads must be avoided during mounting and operation.
- Bending or twisting of cables or leads directly on the thermistor body is not permissible.
- Avoid using chemical substances as mounting aids. It must be ensured that no water or other liquids enter the NTC thermistors (e.g. through plug terminals). In particular water-based substances (e.g. soap suds) must not be used as mounting aids for sensors.

B58101A0109A000

Probe assemblies

Aluminum pipe metal clip-on sensors, HP100

Operation

- Use thermistors only within the specified operating temperature range.
- Use thermistors only within the specified power range.
- Environmental conditions must not harm the thermistors. Only use the thermistors under normal atmospheric conditions or within the specified conditions.
- Ensure that no significant thermo-mechanical stress occurs during operation due to the mounting situation. Fixtures must not overstress the sensor by an excessive mechanical preload.
- Contact of NTC thermistors with any liquids and solvents shall be prevented. It must be ensured that no water enters the NTC thermistors (e.g. through plug terminals). For measurement purposes (checking the specified resistance vs. temperature) the component must not be immersed in water but in suitable liquids (e.g. Galden).
- Avoid dewing and condensation unless thermistor is specified for these conditions.
- Bending or twisting of cables and/or wires is not permissible during operation of the sensor in the application.
- Be sure to provide an appropriate fail-safe function to prevent secondary product damage caused by malfunction.

This listing does not claim to be complete but merely reflects the experience of TDK Electronics AG.

Display of ordering codes for TDK Electronics products

The ordering code for one and the same product can be represented differently in data sheets. data books. other publications. on the company website. or in order-related documents such as shipping notes. order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.tdk-electronics.tdk.com/orderingcodes.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.
 - We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.
- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.

Important notes

8. The trade names EPCOS, CarXield, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, ModCap, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap, XieldCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2020-06