il idearswitcon

Preliminary Datasheet MM9200 - SPST Power Switch
 Product Overview

Description

The MM9200 is a high-power SPST micro-mechanical switch. The innovative Ideal Switch® technology enables highly reliable micro-mechanical switches capable of carrying high voltage and high current in a small form factor. The MM9200 provides ultralow on-state resistance, low leakage current and high voltage stand-off, with greater than 1 billion switching cycles. Because of its long lifetime, extremely low current consumption, and small form factor, the MM9200 is an ideal solution for replacing electromechanical relays, as well as solid-state switches such as IGBT and MOSFETs where size, weight, power efficiency, and thermal management are critical system-level design parameters.

Unlike MOSFETs, the MM9200 supports bidirectional current between contacts same as electromechanical relays. The internal dual gates are controlled via the common GATE pin and requires a gate bias voltage in relation to the MIDPOINT pin to turn on the switch. Multiple MM9200 devices can be connected in series or in parallel to increase voltage rating or current rating, respectively.

Features

- Low On-State resistance $10 \mathrm{~m} \Omega$ (typ.)
- Voltage standoff (AC or DC): +/- 300V
- Rated continuous current (AC or DC): +/-10A
- Fast switching time ($10 \mu \mathrm{~s}$ to open, $10 \mu \mathrm{~s}$ to close)
- High mechanical endurance: 1 billion operations
- QFN and low-profile $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ WL-CSP Package options available

Applications

- LV industrial controls
- Solid State Relay (SSR) replacement
- Electromechanical Relay (EMR) replacement

Markets

- Industrial automation
- Sustainable buildings
- Transport electrification
- Infrastructure modernization

Electrical Characteristics

Operating Characteristics

Absolute Maximum Ratings

Exceeding the maximum ratings as listed in Table 1 below may reduce the reliability of the device or cause permanent damage. Operation of the MM9200 should be restricted to the limits indicated in Table 2 recommended operating conditions.

Electrostatic Discharge (ESD) Safeguards

The MM9200 is a Class 0 ESD device. When handling the MM9200, observe precautions as with any other ESD sensitive device. Do not exceed the voltage ratings specified in Table 1.

Table 1 Absolute Maximum Ratings ${ }^{1}$

Parameter	Symbol	Min	Max	Unit
Voltage Standoff ${ }^{2}$ (INPUT to OUTPUT)			+/-300	V
Continuous Current			+/-10	A
Voltage GATE to MIDPOINT pin			+/-100	V
Operating Temperature Range		-40	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
Reflow Soldering (Pb Free) Peak temperature			260	${ }^{\circ} \mathrm{C}$
Reflow Soldering Time at Peak			30	sec
Thermal Resistance CSP Junction to Board ${ }^{3}$ Junction to Case QFN Junction to Board ${ }^{4}$ Junction to Case	$\Theta_{\text {Јв }}$ $\Theta_{\text {лс }}$ $\Theta_{\text {Јв }}$ $\Theta_{\text {Jc }}$		$\begin{aligned} & 20.5 \\ & 24.3 \\ & 26.4 \\ & 20.9 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]© 2022 Menlo Microsystems, Inc. | All Rights Reserved | www.menlomicro.com

ES France - Département RF \& Hyperfréquences - 127 rue de Buzenval BP 26-92380 Garches
Tél. 0147959960 - Fax. 0147011622 - e-mail: hyper@es-france.com - Site Web: www.es-france.com

3 MM9200 - SPST Power Switch - Preliminary Datasheet | Nov. 30, 2022 v1.0

Table 2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit	Conditions
Gate Bias Voltage	VaATE	88	92	V	Gate bias is referenced to MIDPOINT, See application. Both negative and positive gate bias will turn On the device.
Voltage Standoff	V STANDOFF	-92	-88		

Table 3 DC and AC Electrical Specifications

All specifications valid over full $\mathrm{V}_{\text {GATE }}$ range and full operating temperature range unless otherwise noted.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
On-State Contact Resistance	Ron		10		$\mathrm{m} \Omega$	Measured from INPUT to OUTPUT pins.
Off-State Contact Isolation	Roff		5		$\mathrm{G} \Omega$	Measured from INPUT to OUTPUT pins. Measured at 150 V .
Off-State Contact Leakage Current			100		nA	Measured from INPUT to OUTPUT pins. Measured at 150 V . In addition to the MEMS path, there is a bias network which dominates the total leakage. The bias network can be adjusted to meet user requirements. Measured at 150 V .
Continuous Current		-10		10	$\begin{gathered} \mathrm{A} \\ (\mathrm{AC} / \mathrm{DC}) \end{gathered}$	
Gate Bias Current			1		nA	
Capacitance Off-State, INPUT to OUTPUT pin	ClO_{10}		0.55		pF	See Figure 1 and Figure 2 for equivalent circuit.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Switching Time Turn-On time						
Turn-Off time			10		us	
Mechanical Endurance		1×10^{9}			Cycle	

Steady State Equivalent Circuits

Referring to the equivalent circuits shown in Figure 1 and Figure 2.

On resistance is:

$$
\mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{MO}}+\mathrm{R}_{\mathrm{MI}}=\sim 10 \mathrm{~m} \Omega
$$

Off capacitance is:

$$
C_{\text {off }}=\sim 0.55 \mathrm{pF}
$$

Figure 1: Equivalent Circuit Model (Switch in CLOSED position)

Figure 2: Equivalent Circuit Model (Switch in OPEN position)

Functional Block Diagram

Figure 3: MM9200 Functional Diagram
Functionally, the MM9200 has two sets of contacts in series as shown in Figure 3. Each set of contacts can stand-off up to one-half of Vstandoff (i.e., Vstandoff/2), as shown in Table 2. To be able to withstand the fully rated Vstandoff Input (I) to Output (0), the MM9200 needs to be biased such that the Midpoint (\mathbf{M}) is at most Vstandoff/2 from Input or Output. See Typical Application Circuits on page 10 for implementation details for Midpoint biasing. Both sets of contacts are actuated by applying voltage to a common Gate (G).

Package / Pinout Information

The MM9200 is available in QFN and low-profile $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ WL-CSP packaging options. The packages abide to IEC creepage guidelines.

QFN Package Pin Out

INPUT

Figure 4: MM9200 QFN Top-Down Pin Layout

Table 4 QFN Detailed Pin Description

Pin \#	Pin Name	Description
1	GATE	Gate control to turn switch on/off, referenced to MIDPOINT pin.
2	MIDPOINT	Beams Reference
3	INPUT	Switch Input Pin
4	OUTPUT	Switch Output Pin

WL-CSP Package Pin Out

$\begin{array}{llllllll}A & B & C & D & E & F & G & H\end{array}$

Figure 5: MM9200 WF-CSP Pinout (Top View)
Table 5 WL-CSP Detailed Pin Description

Pin \#	Pin Name	Description
A1	GATE	Gate control to turn switch on/off, referenced to MIDPOINT pin
H11	MIDPOINT	Beams Reference
A2..A11, C1..C11, E1..E11,G1..G11	INPUT	Switch Input Pins (tied together)
B1..B11, D1..D11, F1..F11,H1..H10	OUTPUT	Switch Output Pin (tied together)

Performance

Figure 6: On-State Resistance over Ambient Temperature ${ }^{5}$

Figure 7: Power Dissipation over Case Temperature ${ }^{6}$

Figure 8: Fuse Curve ${ }^{7}$

[^1]ES France - Département RF \& Hyperfréquences - 127 rue de Buzenval BP 26-92380 Garches
Tél. 0147959960 - Fax. 0147011622 - e-mail: hyper@es-france.com - SiteWeb: www.es-france.com

Typical Application Circuits

INPUT Pins

The MM9200 WL-CSP package has multiple input pins named INPUT, QFN package has only one. In the WF-CSP, they are internally connected inside the package; however, they shall be externally connected in the application as close as possible to the package.

OUTPUT Pins

The MM9200 WL-CSP package has multiple output pins are named OUTPUT, QFN package has only one. Like the WL-CSP package INPUT pins, they are internally connected inside the package and shall also be externally connected in the application as close as possible to the package.

GATE Pin

The gate pin is connected to the electrostatic actuation electrode used to close the two switch elements. The counter electrode is connected to the MIDPOINT pin that serves as the reference voltage for the actuation voltage applied at the GATE pin. The allowable voltages on the GATE pin are 0 V and 90 V (nominal, see Vate specification).

MIDPOINT Pin

To ensure that the MIDPOINT pin operates at the correct DC voltage based on the INPUT and OUTPUT pin DC voltages, it is recommended to use a resistive divider as shown in Figure 9. This ensures that the DC voltage applied to the MIDPOINT pin is correct for the Off/open state, as well as for proper switch actuation and On/closed state closure.

Figure 9: Midpoint biasing to balance voltage

Package Drawing

QFN Package Options

Figure 10: MM9200 QFN Package Drawing (Bottom View, units are mm)

WL-CSP Package Option

Figure 11: MM9200 WL-CSP Package Drawing (Bottom View/Bumps Up)

Recommended PCB Layout and SMT Parameters

- Electroless Nickel Immersion Gold (ENIG) pad surface finish
- 20 micron ($\mu \mathrm{m}$) thick solder mask.
- Type 3 or higher solder paste with no clean flux.
- Component placement force not to exceed 100 grams.
- Recommending 1 or 2 oz copper weight to minimize interconnect resistance.
- Ensure the substrate x / y coefficient of thermal expansion (CTE) is $15 \mathrm{ppm} / \mathrm{C}$ or lower.
- For QFN, follow Moisture Sensitivity Level (MSL) 3 handling precautions specified in IPC/JEDEC J-STD-020.

Package Marking Information

Dot • = Pin 1 Indicator
Line $1=2 \mathrm{D}$ Bar Code
Line 2 = Human-readable product code

Package Materials Information

The MM9200 is shipped in tape and reel.

Package Options and Ordering Information

Part Number	Package	Temperature Range	Device Marking ${ }^{8}$
MM9200-02NDE	300V/10A - SPST - 6 mm $\times 6 \mathrm{~mm}$ QFN	-40C to 85C	DAxxxxx
MM9200-02NDE-TR	300V/10A - SPST - 6 mm $x 6 \mathrm{~mm}$ QFN, Tape and Reel (Qty 250)		DAxxxxx
MM9200-03NDE	300V/10A - SPST - 5 mm x 5 mm WL-CSP	-40C to 85C	DAxxxxx
MM9200-03NDE-TR	300V/10A - SPST - 5 mm x 5 mm WL-CSP, Tape and Reel (Qty 250)		DAxxxxx
MM9200EVK1	MM9200 Evaluation Board		

Legacy Product Name	NEW Product Name BULK Tape and Reel	
MM9200-02	MM9200-02NDE	MM9200-02NDE-TR
MM9200-03	MM9200-03NDE	MM9200-03NDE-TR
${ }^{* * 250 p c s ~ s t a n d a r d ~ t a p e ~ a n d ~ r e e l ~ i n c r e m e n t ~}$		

${ }^{8}$ Additional markings may be present, including logo or lot trace code information. This information may be
a 2D barcode or other human-readable markings. Note that ' x ' is place holder for 5 -digit numerical code.
*All Menlo Micro solutions are EAR99 compliant.

ES France - Département RF \& Hyperfréquences - 127 rue de Buzenval BP 26-92380 Garches
Tél. 0147959960 - Fax. 0147011622 - e-mail: hyper@es-france.com - Site Web: www.es-france.com

Important Information

Disclaimer

The data presented in this document is for informational purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Any warranty or license for this product shall be specified and governed by the terms of a separate purchase agreement. Menlo Micro does not assume any liability arising out of the application or use of this product; neither does it convey any license under its patent rights, nor the rights of others.
Menlo Micro reserves the right to make changes in these specifications and features shown herein to improve reliability, function and design, or discontinue of this product, at any time without notice or obligation. Contact our product representative for the most current information.

Warning

This product is not authorized for use:

1) In any life support systems.
2) Applications for implanting into the human body, without the express written approval from Menlo Micro.

Trademark Notices

All trademarks and product service marks are owned by Menlo Microsystems, Inc.

Contact Information

Please contact Menlo Micro for the latest specifications, additional product information, test and evaluation boards, product samples, worldwide sales and distribution locations:
Internet: www.menlomicro.com
E-mail: sales@menlomicro.com
For product technical questions and application information: support@menlomicro.com.

[^0]: ${ }^{1}$ All parameters must be within recommended operating conditions. Maximum power can only be applied during the on-state condition (cold-switched condition).
 ${ }^{2}$ Requires MIDPOINT pin biased to the average voltage between the INPUT and the OUTPUT pins.
 ${ }^{3}$ Refer to Recommended PCB Layout and SMT Parameters on page 12 for copper requirements.
 ${ }^{4}$ Refer to Recommended PCB Layout and SMT Parameters on page 12 for copper requirements.

[^1]: ${ }^{5}$ Measured on MM5130 (will be updated per MM9200 characterization plan)
 ${ }^{6}$ Measured on MM5130 (will be updated per MM9200 characterization plan)
 ${ }^{7}$ Measured on MM5130 @ $25^{\circ} \mathrm{C}$ (will be updated per MM9200 characterization plan)
 menlomicro
 © 2022 Menlo Microsystems, Inc. | All Rights Reserved | www.menlomicro.com

