

NANOVEA PS50

X-Y

DÉPLACEMENT DE LA PLATINE

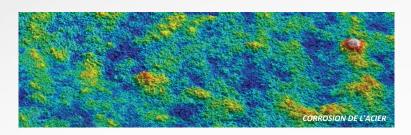
Motorisé 50 x 50 mm

AXE

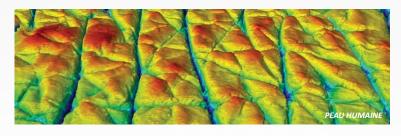
30 mm Manuel

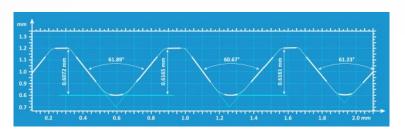
X-Y

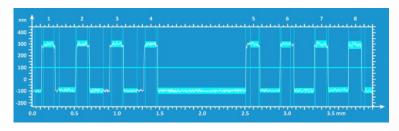
VITESSE MAX

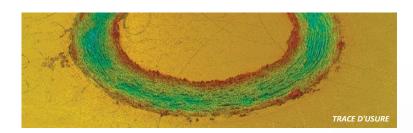

20 mm/s

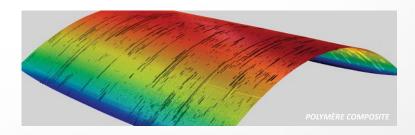
LA PUISSANCE DE LA LUMIÈRE CHROMATIQUE


Les profilomètres optiques sans contact NANOVEA sont la mise à niveau idéale par rapport aux profilomètres traditionnels à stylet de contact et à laser.


MESURES DE SURFACE 2D & 3D SANS CONTACT


RUGOSITÉ & FINITION


TEXTURE & GRAIN


GÉOMÉTRIE & FORME

HAUTEUR DE MARCHE & ÉPAISSEUR

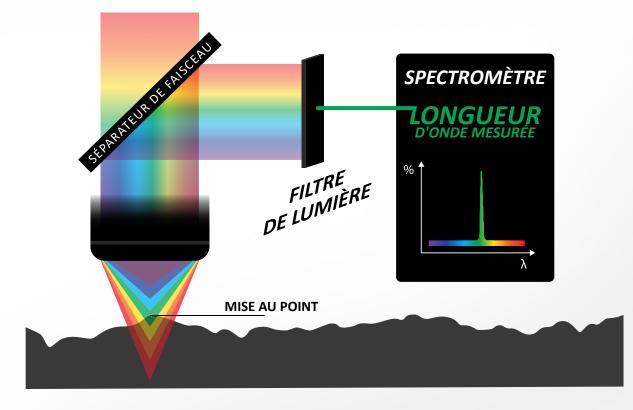
VOLUME & SURFACE

PLANÉITÉ & VOILURE

TOUT MATÉRIAU. TRANSPARENT, RÉFLÉCHISSANT OU NON

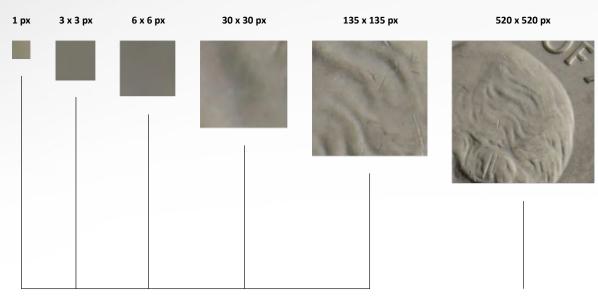
POINT UNIQUE

•	PS1	PS2	PS3	PS4	PS5	PS6
PLAGE DE HAUTEUR MAX	110 μm ——	300 μm ——	1.1 mm —	3.5 mm ——	10 mm	24 mm
DISTANCE DE TRAVAIL	3.3 mm ——	10.8 mm —	12.2 mm —	16.5 mm —	26.6 mm —	20 mm
PRÉCISION LATÉRALE X - Y ———	0.8 μm ——	1.7 μm ——	2.6 μm ——	4.6 μm ——	11.0 μm —	11.0 μm
RÉPÉTABILITÉ EN HAUTEUR * —	1.9 nm ——	5.4 nm ——	15.8 nm ——	31.6 nm ——	117.0 nm —	237.2 nm



jusqu'à 87° angle de surface max

COMMENT ÇA FONCTIONNE


La technologie de la lumière chromatique fonctionne en utilisant la lumière blanche et un ensemble de lentilles sphéro-chromatiques pour séparer la lumière en longueurs d'onde individuelles, chacune ayant son propre point focal vertical ou hauteur. Toutes les longueurs d'onde, avec leurs hauteurs correspondantes, composent l'échelle de mesure de la plage de hauteurs d'un capteur.

Le spectromètre détecte la longueur d'onde avec la plus grande intensité et traite sa mesure de hauteur associée. Lors d'un balayage raster complet, ce processus ne prend qu'une fraction de seconde et produit une carte de hauteur précise de la surface d'intérêt.

LE PROBLÈME DES AUTRES TECHNIQUES

RÉSOLUTION LATÉRALE VS PRÉCISION LATÉRALE

PAS ASSEZ DE DONNÉES POUR CALCULER LA MISE AU POINT **AUCUNE UTILITÉ PRATIQUE**

RÉSOLUTION DE LA TAILLE DU PIXEL

LA MISE AU POINT PEUT ÊTRE CALCULÉE LE PLUS PETIT INCRÉMENT **POUR TOUTE UTILISATION PRATIQUE**

PRÉCISION EFFECTIVE: 1040 nm

EUX

Pour impressionner les clients, les entreprises choisissent souvent de définir la résolution d'affichage ou la taille des pixels de la caméra comme résolution latérale. Cependant, les instruments basés sur la technologie des pixels de caméra nécessitent des algorithmes complexes pour déterminer le point focal, ce qui pose problème pour l'analyse des surfaces complexes.

NOUS

La Lumière Chromatique offre une précision latérale déterminée par la physique et est directement liée à la taille du spot de la source lumineuse chromatique du capteur optique.

MICROSCOPIE CONFOCALE À BALAYAGE LASER

LUMIÈRE CHROMATIQUE **CAPTEUR OPTIQUE**

RISQUE POUR LA SANTÉ

Exposition à la réflectivité de la lumière laser

LONGUEUR D'ONDE LASER INCONSISTANTE

Les incohérences de longueur d'onde pendant le balayage affectent la précision des résultats

«RÉSOLUTION D'AFFICHAGE» TROMPEUSE

La précision latérale et en hauteur est fixée par l'objectif rendant la «résolution d'affichage» insignifiante

ALGORITHMES COMPLEXES

Les algorithmes de mélange alpha assemblent les données couche par couche, basant la précision sur des calculs complexes

FUSION D'IMAGES REQUISE

Les objectifs ont des champs de vision fixes limités La fusion d'image de grandes zones compromet la précision du scan

50x PLUS LENT

Vitesse d'acquisition des données jusqu'à 7,9 KHz

LUMIÈRE BLANCHE

Pas besoin de protection

SPECTRE DE LUMIÈRE BLANCE UNIFORME ET LARGE

Les variations de longueur d'onde sont les données collectées

PRÉCISION LATÉRALE ET EN HAUTEUR INDÉPENDANTES

La précision latérale et en hauteur peut être combinée pour répondre à une large gamme d'exigences de mesures

AUCUN ALGORITHME

La longueur d'onde physique réfléchie par la surface est mesurée directement pour une donnée de hauteur précise

AUCUNE FUSION D'IMAGES

Les points de données sont collectés en continu offrant la même précision pour les petites et grandes surfaces

50x PLUS RAPIDE

Vitesse d'acquisition des données jusqu'à 384 KHz

MICROSCOPE LASER

CAPTEUR OPTIQUE

PRÉCISION LATÉRALE

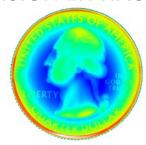
Pour objectif 50x (370 x 277 µm)

- ± 2 % de la valeur mesurée
- ± 2% x 370 μm
- ≈ 15 µm

avec algorithmes d'assemblage >> 15 μm

Taille de pas:

= 5 μm


PRÉCISION LATÉRALE 3 FOIS MEILLEURE

PRÉCISION EN HAUTEUR

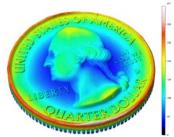
 $\approx 0.2 + L/100 \mu m$

 $\approx 0.2 + 950/100 \, \mu m$

≈ 9,7 µm

Plage de 950 µm

≈ 0,6 µm


PRÉCISION EN HAUTEUR 16 FOIS MEILLEURE

FUSION D'IMAGES REQUIS

scans (25 x 25 mm) 25 000 μ m / 370 μ m x 25 000 μ m / 277 μ m 68 x 91

= 6188 scans

SURFACE TESTÉE

MESURE CONTINUE DE LA SURFACE ENTIÈRE

Précision constante quelle que soit la taille de la mesure

1 SCAN

TEMPS DE TEST

6 sec par scan

- + 4 sec de déplacement et de fusion d'images
- = 10 sec/scan x 6188 scans
- **= 61860 secondes** (≈ 17 heures)

Temps de scan (25 x 25 mm)

= 29,6 secondes

2090x PLUS RAPIDE

NANOVEA

PS50

PROFILOMÈTRE OPTIQUE

Également disponible dans d'autres configurations

PORTABLE COMPACT

PORTABLE STANDARD

PORTABLE HAUTE VITESSE

MODULAIRE STANDARD

MODULAIRE GRANDE SURFACE

NANOVEA.COM

