

CCUS & Clean H₂

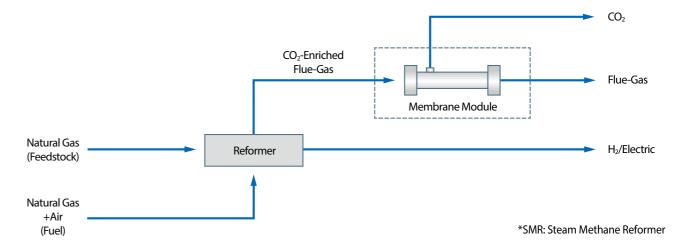
Schematic Diagram

In order to prevent global climate change, technologies to reduce greenhouse gas emission is widely studied in the world. Airrane has been conducting research and development for many years to commercialize a membrane technology for CO₂ captures from flue gas emitted through stacks of various industries. As a result, Airrane commenced a project to supply a CO₂ separation membrane system to a commercial facility that collects 200,000 tons of CO₂ per year from a petrochemical plant flue gas. Based on this experience, we are expanding CO₂ capture business to power plants, steel mills, hydrogen production facilities and fuel cell power stations. The captured CO₂ through this process is liquefied and supplied to fresh food distributors, home shopping companies, and shipbuilders.

Top CO₂ Disposal Industries

Advantages of Membrane CCUS Technology

The CO₂ capture technologies are largely categorized in water-lean solvent method using liquid absorbent like amine or ammonia and membrane separation method. Each technology has advantages and disadvantages depending on the conditions of CO₂ emitting source. Membrane method is generally considered for higher CO₂ concentration source, while amine method is applied to lower CO₂ concentration. In reality, most of CCUS candidate locations need a retrofit designing because of the limited space to install. Membrane CCUS facility requires only 1/6 of the area compared to amine CCUS facility. On top of it, membrane is advantageous for resident acceptance and regulations like REACH.


Korea District Heating Corp.

Lotte Chemical

Membrane CCUS Demonstration Cases

Item		Coal Power Plant Flue gas	LNG Power Plant Flue gas	Cement Kiln Flue gas	NCC Flue gas
Site		Daejeon	Pangyo, Suseo	Okgye	Yeosu
Membrane Process Design		2stage	3stage	3stage	3stage
Feed	Feed gas amount	110m³/hr	400m³/hr	2,000m³/hr	300m³/hr
	CO ₂ Conc.	13.6~15%	4.5~8%	15~22.6%	13~14%
	O ₂ Conc.	0.7~3.4%	5.5~12.8%	9.9~14.3%	4~5%
	NOx	-	-	45~54ppm	~ 50ppm
	DUST	15~22mg/m³	~2mg/m³	serious	< 1mg/m³
Product	CO ₂ Conc.	83.9~84.2%	65~84.9%	85.4~90.4%	90~95%
	CO ₂ recovery(%)	84~86.5%	69~82%	71~92%	80%

Schematic Diagram of CO₂ Capture for SMR/H₂ Fuel Cell System

