

One-eighth the precision variability and five times the measurement speed of legacy models means dramatically improved productivity.

High speed Stability

CF

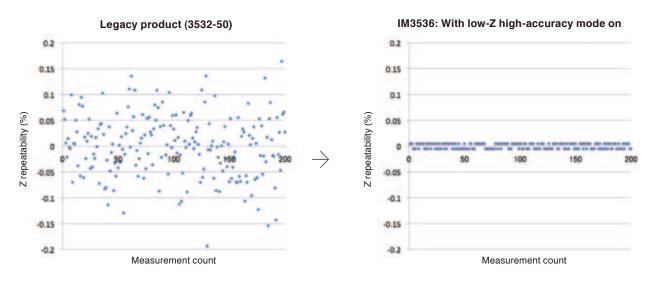
Raising the Bar for Basic Performance

High accuracy $\pm 0.05\%$ rdg.

High speed 1 ms (fastest time)

Guaranteed accuracy range from 1 m Ω

The IM3536 delivers a guaranteed accuracy range that starts at 1 m Ω . Furthermore, the frequency band has been expanded to 8 MHz, broadening the array of measurement targets with which it can be used compared to legacy products.



(ES) Equipements Scientifiques SA - Département Tests & Mesures - 127 rue de Buzenval BP 26 - 92380 Garches Tél. 01 47 95 99 45 - Fax. 01 47 01 16 22 - e-mail: tem@es-france.com - Site Web: www.es-france.com

Low-impedance measurement with unmatched repeatability

The IM3536 delivers repeatability that is an order of magnitude better than that of previous products. This level of performance makes the instrument ideal for use in applications such as electrolytic capacitor low-ESR measurement and power supply coil impedance testing, the latter of which demands excellent frequency characteristics.

Graphs illustrate the results of measuring a resistance of 1 m Ω 200 times under the following conditions:

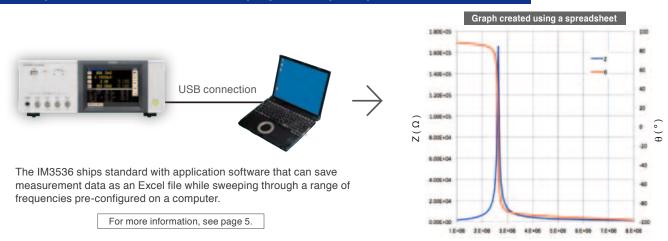
- Frequency: 1 kHz
- Measurement speed: FAST
- Measurement range: 100 m.O.

From measurement to analysis

Applications in development evaluation and research

Ideal for use in R&D work requiring a wide range of measurement conditions and for evaluation of devices under conditions of actual use

The IM3536 enables measurement conditions to be varied over a wide range, for example to analyze a coil's resonance point while varying the frequency or to perform measurement while changing the measurement signal during evaluation of a sample that exhibits signal dependency.


Variable frequency DC, 4 Hz to 8 MHz

Variable voltage

10 mV to 5 V rms
(V mode/CV mode)

Variable current $10\,\mu A \ to \ 100\,mA\,rms$ $_{(CC\ mode)}$

Example of measurement while varying the frequency from 1 MHz to 8 MHz

DC bias function: Measure under conditions simulating actual use or in accordance with industry standards

Internal DC bias (capacitor only)

A DC voltage can be superposed onto the measurement signal while measuring a capacitor.

The generated voltage can be varied from 0 V to 2.50 V DC (10 mV resolution). (Low-Z high-accuracy mode: 0 V to 1 V)

External DC bias

(with support for L or C measurement, depending on the unit)

Requires a separate external DC bias power supply.

DC BIAS VOLTAGE UNIT 9268-10

Measurement frequency range: 40 Hz to 8 MHz Maximum applied voltage: ±40 V DC

DC BIAS CURRENT UNIT 9269-10

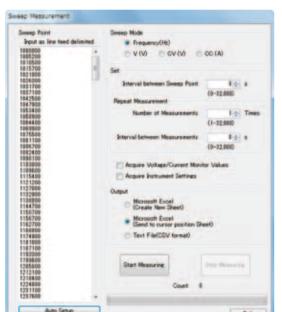
Measurement frequency range: 40 Hz to 2 MHz Maximum applied current: 2 A DC

* An internal 300µH inductance is connected in parallel to the DUT.

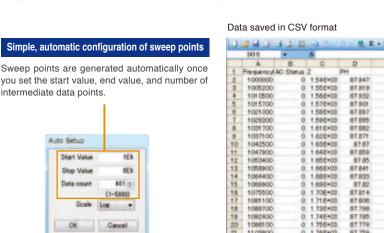
Calculate conductivity and the dielectric constant

The conditions used to calculate conductivity and the dielectric constant can be set easily using the instrument's touch screen.

Enter the following parameters: Conductor length (LENGTH) Conductor cross-sectional area (AREA)



The instrument's touch keypad makes it easy to enter numbers.

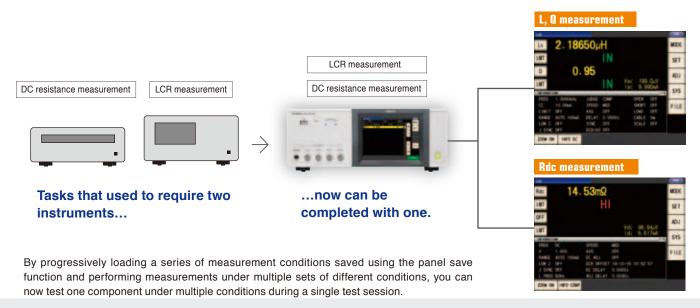

Evaluate samples that exhibit signal dependence using free application software

The bundled application allows you to save measurement data from the LCR meter as a Microsoft Excel or text file (CSV format) using the instrument's USB, LAN, GP-IB, or RS-232C interface.

Standard accessory

- Frequency characteristics (measurement while varying the frequency)
- Voltage characteristics (measurement while varying the voltage)
- · Current characteristics (measurement while varying the current)
- Time interval measurement (measurement at a specified time interval)
- Capture measured value when the RETURN key is pressed (one-off measurement)

(ES) Equipements Scientifiques SA - Département Tests & Mesures - 127 rue de Buzenval BP 26 - 92380 Garches Tél. 01 47 95 99 45 - Fax. 01 47 01 16 22 - e-mail: tem@es-france.com - Site Web: www.es-france.com



Simplifying the process of building production lines Increase convenience and efficiency

Perform two jobs with one instrument to save space and speed up the process of building a system

Continuous measurement function

Suppose you wish to test power supply inductance L-Q at 1 kHz plus DC resistance (Rdc). The IM3536 steps up by delivering high-speed, continuous measurement of different conditions with a single instrument.

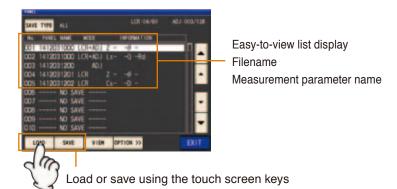
Display saved panels as a list and load them quickly

Panel save and load functions

Save and load measurement conditions and compensation values.

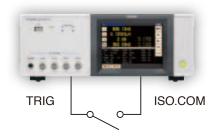
Ensure reliable application of settings during setup changes

Target A: Measurement conditions and judgment standards

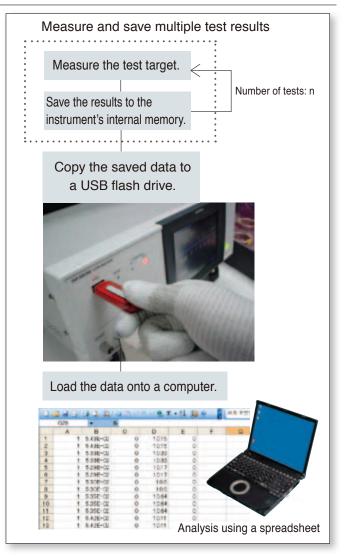

- Measurement parameters: Ls, Q, Rdc
- Measurement frequency: 1 kHz
- · Constant current: 1 mA

Target B: Measurement conditions and judgment standards

- Measurement parameters: Z, θ
- · Measurement frequency: 1.5 kHz
- · Constant current: 0.5 mA


Analyze the data you need on a computer quickly and easily

Memory function and USB flash drive support



Save 32000 measurement results, copy them to a USB flash drive, and load them onto a computer. You can then open the measurement data using a spreadsheet to analyze variations and manage test data.

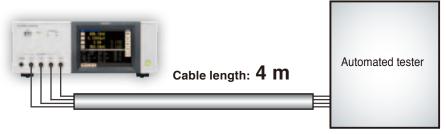
Even if both hands are full

Select [External trigger] as the trigger setting and then control instrument operations such as measurement and saving of data from an external device such as a foot switch via the EXT. I/O terminal's TRIG signal.

Improved protective functionality to reduce maintenance downtime

Residual charge protection function

The IM3536 features an enhanced residual charge protection function that is designed to protect the instrument's internal circuitry from a capacitor discharge voltage in the event a charged capacitor is inadvertently connected to a measurement terminal.

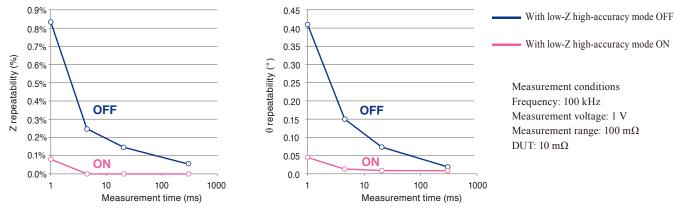


Functionality supporting more accurate measurement Delivering reliability for production-line testing

Compensate for anticipated errors

Cable length compensation

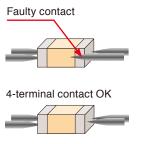
Select from cable length settings of 0 m, 1 m, 2 m, and 4 m, guaranteeing accuracy even when measurement cables have been extended.



Measured values are compensated according to the reference sample, ensuring compatibility of measured values from multiple devices on production lines and when swapping out devices, for example when a unit needs to be calibrated.

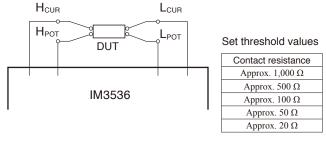
Low-Z high-accuracy mode for increasing the maximum applied current

When using low-Z high-accuracy mode, the output resistance changes to 10 Ω , allowing more current to flow to the sample being measured so that high-precision measurement is guaranteed.

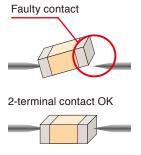


Low-Z high-accuracy mode can be used with the 100 m Ω , 1 Ω , and 10 Ω ranges.

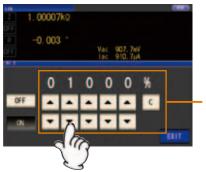
This mode is especially effective when performing low-inductance L measurement of power supplies and ESR measurement of aluminum electrolytic capacitors.


Contact check function

Detect faulty contact with the sample during four-terminal measurement.


The contact check function measures the contact resistance between L_{POT} and L_{CUR} and between H_{POT} and H_{CUR} and displays an error if the readings are greater than or equal to a preset threshold.

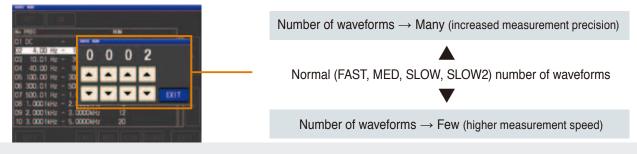
 ${
m H_{CUR}}$ terminal: Current generation terminal ${
m H_{POT}}$ terminal: HI voltage detection terminal ${
m L_{POT}}$ terminal: LO voltage detection terminal ${
m L_{CUR}}$ terminal: Current detection terminal

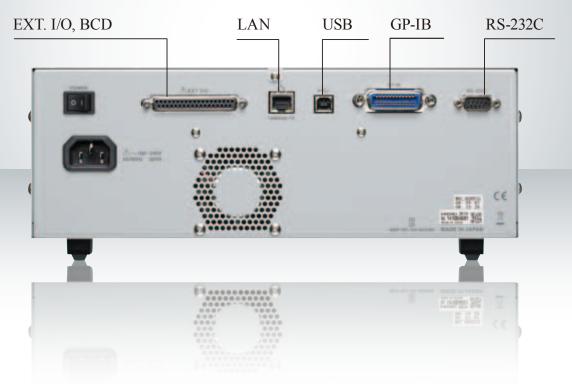


Hi-Z reject function

Detect contact errors during two-terminal measurement.

The Hi-Z reject function outputs an error if the measurement result exceeds a preset judgment standard. This capability enables the instrument to detect poor contact when performing measurement using a two-terminal fixture.

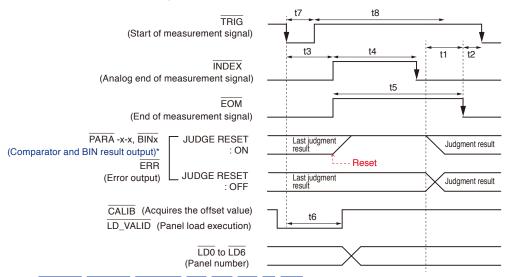



The judgment standard is calculated based on the measurement range and judgment reference value (valid setting range: 0% to 30,000%).

The instrument's touch keypad makes it easy to enter judgment reference values.

Improve measurement precision with the waveform averaging function

The IM3536's waveform averaging function lets you set the number of measured waveforms for each frequency band determined by the measurement speed setting (FAST, MED, SLOW, SLOW2).



Access an extensive range of interfaces in all model variants

EXT. I/O

EXT. I/O allows you to output the measurement complete signal and judgment results signal and to control the instrument by inputting signals such as a measurement trigger signal. All signal lines are isolated from the instrument's measurement and control circuitry for maximum noise resistance.

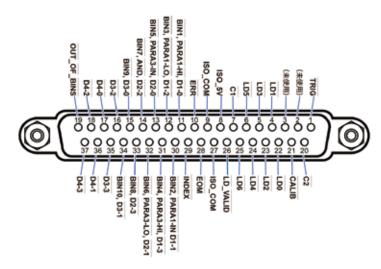
■ Example of EXT I/O timing (LCR mode)

- $\hbox{*:}\ \overline{\mathsf{PARAx\text{-}HI}}, \overline{\mathsf{PARAx\text{-}IN}}, \overline{\mathsf{PARAx\text{-}LO}}, \overline{\mathsf{AND}}, \overline{\mathsf{BINx}}, \overline{\mathsf{OUT}}_\overline{\mathsf{OF}}_\overline{\mathsf{BINS}}$
 - tl: From Comparator, BIN Judgement Result to \overline{EOM} (LO): Setting value for delay time *1 (Settable range: 0.0000 s to 0.9999 s) ; 40 μ s
 - t2: From EOM width (LO) to TRIG (LO): Minimum time from end of measurement to next trigger *2; 400 µs
 - t3: From \overline{TRIG} (LO) to \overline{INDEX} (HI): Time from trigger to circuit response *3; 400 μs
 - t4: $\overline{\text{INDEX}}$ width (HI): Analog measurement time (=Minimum chuck time), switching chuck with $\overline{\text{INDEX}}$ (LO) is possible *4; 1 ms
 - t5: EOM width (HI): Measurement time *4; 1.5 ms
 - $t6: From \ \overline{TRIG} \ width \ (LO) \ to \ \overline{LD\text{-}VALID} \ (HI), \overline{CALIB} \ (HI): Time \ to \ panel \ load \ execution \ and \ DC \ adjustment \ request \ signal \ detection: \ at \ least \ t3$
 - t7: Trigger pulse width (LO time); At least 100 μs
 - t8: Trigger off (HI time) ; At least 100 μs
 - *1. There is an apporoximate error of $100~\mu s$ in the delay time entered for Judgement Result \leftrightarrow EOM for the setting value. t1 is the reference value for when the setting value is 0.0000~s.
 - *2. t2 is the reference value for when trigger input for during measurement is disabled.
 - *3. Additional time is required when loading panel numbers using the panel load function.

■ EXT. I/O signal list

Input signals

TRIG	: External trigger
LD0 to LD6	: Select panel number
LD_VALID	: Execute panel load
C1	: During BCD output, toggle between
$\overline{C2}$	high-order and low-order digits
	: During BCD output, toggle between
	the No. 1 and No. 3 parameters
CALIB	: DC adjustment request


Output signals

EOM	: End of measurement
INDEX	: End of capture
ERR	: Measurement error output
ISO_5V	: Isolated 5V power output
ISO_COM	: Isolated common signal ground

Output signals (common signal line)

PARAx-HI, PARAx-IN, PARAx-LO (x=1,3), AND	: Comparator judgment result output
BIN1 to BIN10, OUT_OF_BINS	: BIN judgment result output
D1-0 to D1-3 D2-0 to D2-3 D3-0 to D3-3 D4-0 to D4-3	: BCD output signal

■ IM3536 connector signal assignment (LCR mode operation)

Signal assignment is different during continuous measurement mode. Signal logic is 0 V to 0.9 V for LO level and 5 V to 24 V for HI level.

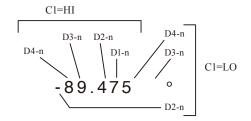
■ Connectors

Connectors to use (unit side)
Compliant connectors

: 37-pin D- sub female connector with #4-40 inch screws : DC-37P-ULR (solder type) and DCSP-JB37PR (pressure weld type)

For information on where to obtain connectors, consult your nearest HIOKI distributor.

■ Electrical specifications


Input signals	Input type	Optocoupler-isolated, non-voltage contact inputs (current sink, active-low)		
	Input asserted (on) voltage	0.9 V or less		
	Input de-asserted (off) voltage	OPEN or 5 V to 24 V		
	Input asserted (on) current	3 mA/ch		
	Maximum applied voltage	30 V		
Output signals	Output type	Isolated NPN open-collector outputs (current sink, active-low)		
	Maximum load voltage	30V		
	Maximum output current	50 mA/ch		
	Residual voltage	1 V (10 mA), 1.5 V (50 mA)		
Internally isolated	Output voltage	4.5 V to 5.0 V		
power supply	Maximum output current	100 mA		
	External power input	none		

BCD

LCR mode output signals operate in two modes: judgment mode and BCD mode. In BCD mode, measured values for the No. 1 parameter and the No. 3 parameter are output using the BCD signals. *LCR mode only

The BCD high-order digit and low-order digit (polarity and ERR information) can be switched with the Cl signal.

C1	D4	D3	D2	D1
HI (high-order)	No. 6 digit data	No. 5 digit data	No. 4 digit data	No. 3 digit data
LO (low-order)	No. 2 digit data	No. 1 digit data	Polarity	ERR

Interfaces

Control the instrument with communication commands from a computer via the USB, LAN, GP-IB, or RS-232C interfaces.

USB

Connector	USB Type B receptacle
Electrical specifications	USB2.0 (High Speed)

GP-IB

Connector	24-pin Centronics type connector
Standard	IEEE-488.1 1987
Reference standard	IEEE-488.2 1987
Torminator	I E CD±I E

LAN

Connector	RJ-45 connector
Transmission method	10Base-T/100Base-T automatic detection
Protocol	TCP/IP

RS-232C

D-sub 9-pin connector
Hardware/Software
9600 bps, 19200 bps, 38400 bps, 57600 bps

Measurement parameters and measurement conditions

Admittance		- I				
Z			Υ θ X G B	Admittance Phase angle Reactance Conductance Susceptance Q-factor	Rp Ls Lp Cs Cp D	Equivalent parallel resistance Equivalent series inductance Equivalent parallel inductance Equivalent parallel inductance Equivalent series capacitance Equivalent parallel capacitance Loss factor tan \(\delta \) Conductivity
Normal mode: 100 Ω, Low impedance high accuracy mode: 10Ω	Display ra	nge	$\begin{array}{lll} Y & 0.000 \text{ n to } 9.99999 \text{ GS} \\ \theta & \pm (0.000^{\circ} \text{ to } 180.000^{\circ}) \\ X & \pm (0.00 \text{ m to } 9.99999 \text{ G}\Omega) \\ G & \pm (0.000 \text{ n to } 9.99999 \text{ GS}) \\ B & \pm (0.000 \text{ n to } 9.99999 \text{ GS}) \\ Q & \pm (0.00 \text{ to } 9.999.99) \end{array}$		Rp Ls Lp Cs Cp D Δ%	±(0.00 m to 9.99999 GΩ) ±(0.00000 μ to 9.99999 GH) ±(0.00000 μ to 9.99999 GH) ±(0.0000 p to 9.99999 GF) ±(0.0000 p to 9.99999 GF) ±(0.00000 to 9.99999) ±(0.00000 to 999.999) ±(0.00000 to 999.999 G)
Measurement frequency A Hz to 8 MHz	Measurabl	e range	1 mΩ t	o 200 MΩ		
Measurement frequency 4.00 Hz to 999.99 Hz						
1.0000 kHz to 9.9999 kHz 100 mHz steps		Range	4 Hz to	8 MHz		
Normal mode 4 Hz to 1.0000 MHz: 10 mV to 5 V rms (maximum 50 mA)			1.0000 kHz to 9.9999 kHz 100 mHz steps 10.000 kHz to 99.999 kHz 1 Hz steps 100.00 kHz to 999.99 kHz 10 Hz steps			
Measurement signal level [V mode] Resolution Resol		Accuracy	±0.01%	of setting or less		
Measurement signal level CC mode Resolution C resistance measurement CC mode DC hias measurement CC mode DC hias measurement CC mode DC hias measurement DC hiss measurement DC resistance measurement DC hiss meas	signal level [V mode]	ement 4 Hz to 1.0000 MHz: 10 mV to 5 V rms evel Range 1.0001 MHz to 8 MHz: 10 mV to 1 V rm [Low impedance high accuracy mo		ms (maximum 10mA) ode]		
Measurement signal level [CC mode] Range signal level [CC mode] Resolution Monitor function Monitor voltage range: 0.000 V to 5.000 V rms Monitor current range: 0.000 mA to 100.0 mA rms DC resistance measurement DC bias measurement		Resolution	10 mV rms to 1.000 V rms 1 mV rms steps			
Monitor function Monitor voltage range: 0.000 V to 5.000 V rms Monitor current range: 0.000 mA to 100.0 mA rms DC resistance measurement Measurement signal level: Fixed at 1 V Generating range: DC voltage 0 V to 2.50 V (10mV resolution)	signal level		4 Hz to 1.0000 MHz: 10 μA to 50 mA rms (maximum 5 V) 1.0001 MHz to 8 MHz: 10 μA to 1 mA rms (maximum 1 V) [Low impedance high accuracy mode]			
Monitor function Monitor current range: 0.000 mA to 100.0 mA rms DC resistance measurement Measurement signal level: Fixed at 1 V DC hias measurement Generating range: DC voltage 0 V to 2.50 V (10mV resolution)		Resolution	10 μΑ	rms steps		
measurement Measurement Indicate the Measurement Indicate the Measurement Measurement Measurement Measurement No. 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (Monitor fu	nction				
			Measurement signal level: Fixed at 1 V			
	DC bias measurement					

Measurement modes

LCR mode

	Bin measurement: 10 categories for 2 measurement parameters Judgment method: Set as absolute values, percentage, or deviation percentage	
Measurements	Comparator measurement: Hi, IN, and Lo judgments for 2 parameters Judgment method: Set as absolute values, percentage, or deviation percentage	
Display	Zoom display function: Enlarged display of measured values Number of display digits setting: Allows you to set the number of display digits for measured values for each measurement parameter. (Valid setting range: 3 to 6 digits)	

Continuous measurement mode

Measurements	Performs continuous measurement using measurement conditions that have been saved using the panel save function. Measurement is started by an external trigger (any of the three types described below)
Maximum number of measurements	60

Speed and accuracy

-	2
Measurement speed	FAST/MED/SLOW/SLOW2
Averaging	Valid setting range: 1 to 256 (in steps of 1)
Basic accuracy	$Z: \pm 0.05\%$ rdg. $\theta: \pm 0.03^{\circ}$ (representative value)
Guaranteed accuracy range	1 mΩ to 200 MΩ (impedance)
Guaranteed accuracy period	1 year
Warm-up time	60 minutes
Terminal structure	4-terminal structure

Supplementary functionality

Trigger function	Uses a specific signal to time the start of measurement. [Trigger types] Internal trigger: Automatically generates a trigger signal internally to repeat measurement. External trigger: Allows you to control the instrument's measurement operation by inputting a trigger signal from an external device (trigger sources: manual, communications commands, EXT. I/O). [Trigger delay] Sets the delay time from trigger input to measurement. Setting range: 0.0000 s to 9.9999 s [Trigger synchronous output] Outputs the measurement signal after trigger input and applies it to the sample during measurement only. Allows you to set a wait time until data is acquired. Setting range: 0.0000 s to 9.9999 s
Compensation function	[Open/short compensation] [Load compensation] Number of sets of compensation conditions: Up to 5 [Cable length compensation] Cable length settings: 0 m, 1 m, 2 m, 4 m [Correlation compensation] Compensation of display values based on user-input compensation coefficient
Contact check	$[4\text{-terminal contact check}] \\ Performs a contact (disconnection) check between H_{CUR} and H_{POT} and between L_{CUR} and L_{POT}. \\ [High-Z reject function] \\ Detection of OPEN state during $2\text{-terminal measurement.} \\$

Recording and interface

Memory function	Measurement result items (maximum 32000 items) can be saved to the instrument. Memory can be read using communications commands or a USB flash drive.		
Panel save and load functions	Measurement conditions: Up to 60 Compensation values: Up to 128		
Interfaces	EXT. I/O(HANDLER) ,USB, USB flash drive, LAN, GP-IB, RS-232C		
BCD output	[Output from EXT. I/O connector] Generates BCD output for the No.1 and No.3 parameter measured values. *Input and output signals are set to BCD mode (selection with judgment output).		

Display and sound

Key lock function	Lock operation of the instrument using the touch screen. Unlock by entering a passcode.
Beep tone	Enable or disable for judgment results and key operation.
Display settings	LCD display on/off Off: The display turns off 10 sec. after the touch panel is last touched.
Display	5.7-inch color TFT with touch panel

Other

Other	
Operating temperature and humidity	0°C to 40°C (32°F to 104°F), 80% RH, non-condensing
Storage temperature and humidity	-10°C to 50°C (14°F to 122°F), 80% RH, non-condensing
Operating environment	Indoors, Pollution Degree 2, altitude up to 2000 m (6562-ft.)
Power supply and maximum rated power	100 V AC to 240 V AC (50/60 Hz), 50 VA
Dielectric strength	1.62 kV AC for 1 min. between power line and ground line
Standards compliance	EMC: EN 61326, EN 61000 Safety: EN 61010
Dimensions and Mass	Approx. 330 W × 119 H × 230 D mm (12.99 W × 4.69 H × 9.06 D in) , approx. 4.2 kg (148.1 oz.)
	Dower aard ×1 Instruction manual ×1

Measurement accuracy

(Accuracy guaranteed for 1 year, Post-adjustment accuracy guaranteed for 1 year)

Measurement accuracy is calculated based on the following equation:

[C: Level coefficient] V: Setting value (corresponds to when V mode) $[V]$			
	Measurement level	1 V	
	Coefficient (DC resistance measurement)	1	

Measurement level	0.010 V to 0.999 V	1 V	1.001 V to 5 V
Coefficient (AC measurement)	1+0.2/V	1	1+0.2/V

[D: Measurement speed coefficient]

	Measurement speed	FAST	MED	SLOW	SLOW2
Coefficient	DC resistance measurement	4	3	2	1
	AC measurement	8	4	2	1

Basic accuracy

Accuracy is calculated based on coefficients A and B from the basic accuracy chart shown below.

1 k Ω range or higher

Basic accuracy=
$$\pm \left(A+Bx \mid \frac{10xZx}{Range} - 1 \mid \right)$$
 Basic accuracy= $\pm \frac{10xZx}{Range}$

Basic accuracy=
$$\pm \left(A+B\times \left| \frac{\text{Range}}{Zx} - 1 \right| \right)$$

Zx: Impedance of the measurement conductor

A: Noted in basic accuracy chart. (Upper value: Z accuracy [% rdg.]; lower value: θ accuracy [°])

B: Noted in basic accuracy chart. (Upper value: Z accuracy [% rdg.]; lower value: θ accuracy [°])

A is the accuracy of R when DC (± % rdg.)

B is the coefficient for the resistance of the sample

Conditions

[E: Measurement cable length coefficient]

Coefficient	0 m	1 m	2 m	4 m
Coefficient	1	1.5	2	3

Measurement accuracy = Basic accuracy \times C \times D \times E \times F \times G

Settable range for frequency

0 m: Up to 8 MHz, 1 m: 8 MHz, 2 m: Up to 2 MHz, 4 m: Up to 1MHz

[F: DC bias coefficient]

DC bias coefficient	OFF	ON
Coefficient	1	2

[G: Temperature coefficient]

Operating temperature	t [°C]
Coefficient	1+0.1× t-23

Temperature and humidity ranges: 23°C ± 5°C, 80% RH or less (no condensation),

at least 60 minutes after power ON, after performing open and short compensation

When the operating temperature (t) is 23°C±5°C, use a coefficient of 1.

Free software for calculating accuracy

(LCR application disc)

Automatically calculate measurement accuracy based on user-entered measurement conditions and measurement results. Free download from the Hioki website.

Basic accuracy

Each decardoy														
Guaranteed ac- curacy rang	DC		4Hz to 99.99Hz		100Hz to 999.99Hz		1kHz to 10kHz		10.001kHz to 100kHz		100.01kHz to 1MHz		1.0001MHz to 8MHz	
$8M\Omega$ to $200M\Omega$	A=1 B=1		A=6 A=5	B=5 B=3	A=3 A=2	B=2 B=2	A=3 A=2	B=2 B=2						
800kΩ to 10MΩ	A=0.5 B=0		A=0.8 A=0.8	B=1 B=0.5	A=0.5 A=0.4	B=0.3 B=0.2	A=0.5 A=0.4	B=0.3 B=0.2	A=2 A=2	B=1 B=1				
80kΩ to 1MΩ	A=0.2 B=0		A=0.4 A=0.3	B=0.08 B=0.08	A=0.3 A=0.2	B=0.05 B=0.02	A=0.3 A=0.2	B=0.05 B=0.02	A=0.5 A=0.6	B=0.1 B=0.1	A=3 A=3	B=0.5 B=0.5		
$8k\Omega$ to $100k\Omega$	A=0.1 B=0		A=0.3 A=0.2	B=0.03 B=0.02	A=0.2 A=0.1	B=0.03 B=0.02	A=0.2 A=0.1	B=0.03 B=0.02	A=0.25 A=0.2	B=0.04 B=0.02	A=1 A=1	B=0.3 B=0.3	A=2 A=2	B=0.5 B=0.3
800Ω to $10k\Omega$	A=0.1 B=0		A=0.3 A=0.3	B=0.03 B=0.01	A=0.2 A=0.1	B=0.02 B=0.02			A=0.3 A=0.2	B=0.02 B=0.02	A=0.5 A=0.5	B=0.05 B=0.05	A=2 A=1.5	B=0.5 B=0.3
80Ω to $1k\Omega$	A=0.1 B=0		A=0.3 A=0.2	B=0.02 B=0.02	A=0.2 A=0.1	B=0.02 B=0.02	A=0.2 A=0.1	B=0.02 B=0.02	A=0.2 A=0.15	B=0.02 B=0.02	A=0.4 A=0.4	B=0.02 B=0.02	A=1.5 A=1.5	B=0.2 B=0.2
8Ω to 100Ω	A=0.1 B=0		A=0.3 A=0.2	B=0.02 B=0.01	A=0.2 A=0.15	B=0.02 B=0.01	A=0.2 A=0.1	B=0.02 B=0.01	A=0.2 A=0.15	B=0.02 B=0.02	A=0.5 A=0.5	B=0.03 B=0.03	A=1.5 A=1.5	B=0.2 B=0.2
800mΩ to 10Ω	A=0.2 B=0		A=0.5 A=0.3	B=0.1 B=0.1	A=0.4 A=0.3	B=0.05 B=0.03	A=0.4 A=0.3	B=0.05 B=0.03	A=0.4 A=0.3	B=0.05 B=0.03	A=0.8 A=0.5	B=0.1 B=0.05	A=2 A=2	B=1.5 B=1
80mΩ to 1Ω	A=0.3 B=0		A=1.5 A=0.8	B=1 B=0.5	A=1 A=0.5	B=0.3 B=0.2	A=1 A=0.5	B=0.3 B=0.2	A=1 A=0.5	B=0.3 B=0.2	A=1.5 A=0.7	B=1 B=0.5	A=3 A=3	B=3 B=2
$1m\Omega$ to $100m\Omega$	A=1 B=1		A=8 A=5	B=8 B=4	A=5 A=3	B=4 B=2	A=3 A=2	B=2 B=1.5	A=2 A=2	B=2 B=1.5	A=4 A=3	B=3 B=4		
	curacy rang 8MΩ to 200MΩ 800kΩ to 10MΩ 80kΩ to 1MΩ 8kΩ to 100kΩ 800Ω to 10kΩ 80Ω to 1kΩ 8Ω to 100Ω 800mΩ to 10Ω 80mΩ to 1Ω	curacy rang DC 8MΩ to 200MΩ A=1 B= 800kΩ to 10MΩ A=0.5 B= 80kΩ to 1MΩ A=0.2 B= 8kΩ to 100kΩ A=0.1 B= 800Ω to 10kΩ A=0.1 B= 80Ω to 1kΩ A=0.1 B= 8Ω to 100Ω A=0.1 B= 800mΩ to 10Ω A=0.2 B= 80mΩ to 1Ω A=0.3 B=	curacy rang DC 8MΩ to 200MΩ A=1 B=1 800kΩ to 10MΩ A=0.5 B=0.3 80kΩ to 1MΩ A=0.2 B=0.1 8kΩ to 100kΩ A=0.1 B=0.01 800Ω to 10kΩ A=0.1 B=0.01 80Ω to 1kΩ A=0.1 B=0.01 8Ω to 100Ω A=0.1 B=0.02 800mΩ to 10Ω A=0.2 B=0.15 80mΩ to 1Ω A=0.3 B=0.3	curacy rang DC 4HZ l0 8MΩ to 200MΩ A=1 B=1 A=6 A=5 800kΩ to 10MΩ A=0.5 B=0.3 A=0.8 A=0.8 80kΩ to 1MΩ A=0.2 B=0.1 A=0.4 A=0.3 8kΩ to 100kΩ A=0.1 B=0.01 A=0.3 A=0.2 800Ω to 10kΩ A=0.1 B=0.01 A=0.3 A=0.2 8Ω to 100Ω A=0.1 B=0.01 A=0.3 A=0.2 800mΩ to 10Ω A=0.1 B=0.02 A=0.3 A=0.2 800mΩ to 1Ω A=0.2 B=0.15 A=0.5 A=0.3 80mΩ to 1Ω A=0.3 B=0.3 A=1.5 A=0.8 1mQ to 100mQ A=1 B=1 A=8	curacy rang DC 4HZ 10 99.99HZ 8MΩ to 200MΩ A=1 B=1 A=6 A=5 B=5 B=3 800kΩ to 10MΩ A=0.5 B=0.3 A=0.8 A=0.8 B=1 A=0.8 B=0.5 80kΩ to 1MΩ A=0.2 B=0.1 A=0.4 A=0.3 B=0.08 A=0.3 B=0.08 B=0.00 80Ω to 100kΩ A=0.1 B=0.01 A=0.3 A=0.2 B=0.02 B=0.02 80Ω to 10kΩ A=0.1 B=0.01 A=0.3 A=0.3 B=0.03 B=0.02 A=0.2 B=0.02 B=0.02 8Ω to 100Ω A=0.1 B=0.02 A=0.3 A=0.2 B=0.02 B=0.02 800mΩ to 10Ω A=0.2 B=0.15 A=0.3 B=0.1 A=0.3 B=0.1 A=0.8 B=0.1 A=0.8 1mΩ to 100 mΩ A=1 B=1 A=0 B=8	curacy rang DC 4HZ 10 99.99HZ 100HZ 10 8MΩ to 200MΩ A=1 B=1 A=6 A=5 B=3 B=3 A=2 800kΩ to 10MΩ A=0.5 B=0.3 A=0.8 A=0.8 B=1 B=0.5 A=0.5 A=0.4 80kΩ to 10MΩ A=0.2 B=0.1 A=0.4 A=0.3 B=0.08 B=0.08 A=0.3 A=0.2 8kΩ to 100kΩ A=0.1 B=0.01 A=0.3 A=0.2 B=0.02 A=0.2 A=0.1 80Ω to 10kΩ A=0.1 B=0.01 A=0.3 A=0.3 B=0.03 A=0.2 A=0.1 80Ω to 1kΩ A=0.1 B=0.01 A=0.3 A=0.2 B=0.02 A=0.2 A=0.2 8Ω to 100Ω A=0.1 B=0.02 A=0.3 A=0.2 B=0.02 A=0.2 A=0.1 800mΩ to 10Ω A=0.2 B=0.15 A=0.3 A=0.1 A=0.3 B=0.1 A=0.3 A=0.3 A=0.3 80mΩ to 10Ω A=0.3 B=0.3 A=0.3 A=1.5 A=0.8 B=1 A=0.5 A=0.5	curacy rang DC 4HZ 10 99.99HZ 100HZ 10 999.99HZ 8MΩ to 200MΩ A=1 B=1 A=6 A=5 B=5 B=3 A=2 A=2 B=2 B=2 800kΩ to 10MΩ A=0.5 B=0.3 A=0.8 A=0.8 B=0.5 B=0.5 A=0.8 A=0.5 B=0.3 A=0.4 B=0.3 B=0.03 A=0.2 A=0.4 B=0.02 8kΩ to 100kΩ A=0.1 B=0.01 B=0.01 A=0.3 A=0.2 B=0.02 B=0.02 A=0.2 A=0.2 B=0.02 A=0.1 B=0.02 A=0.1 A=0.2 B=0.02 B=0.02 A=0.1 B=0.02 A=0.1 B=0.02 A=0.2 A=0.2 B=0.02 B=0.02 A=0.1 B=0.02 A=0.1 B=0.02 A=0.2 B=0.02 A=0.1 B=0.02 A=0.1 B=0.02 A=0.1 B=0.02 A=0.2 B=0.02 A=0.1 B=	εuracy rang DC 4HZ to 99.99HZ 100HZ to 999.99HZ 1RHZ to 99.99HZ A=3 A=2 A=0.5 A=0.4 A=0.5 A=0.4 B=0.02 A=0.4 A=0.3 A=0.2 A=0.3 A=0.2 A=0.0 A=0.0 A=0.0 A=0.0 A=0.0 A=0.2 A=0.2 A=0.0 A=0.0	εuracy rang DC 4Hz to 99.99Hz 100Hz to 99.99Hz 100Hz to 99.99Hz 100Hz to 10 899.99Hz 100Hz to 10	εuracy rang DC 4HZ 10 99.99HZ 100HZ 10 999.99HZ IRRIZ 10 10RHZ 10.001RHZ 8MΩ to 200MΩ A=1 B=1 A=6 A=5 B=5 B=3 A=3 A=2 B=2 B=2 A=3 A=2 B=2 B=2 A=2 B=2 A=2 B=2 800kΩ to 10MΩ A=0.5 B=0.3 A=0.8 A=0.8 B=0.5 A=0.5 A=0.4 B=0.3 A=0.4 A=0.5 B=0.02 A=0.4 A=0.4 B=0.03 A=0.2 A=0.4 B=0.05 A=0.4 A=0.3 B=0.05 A=0.2 A=0.4 B=0.02 A=0.5 A=0.2 B=0.05 A=0.2 A=0.5 A=0.2 B=0.05 A=0.2 A=0.5 A=0.2 B=0.05 A=0.2 A=0.2 B=0.02 A=0.2 A=0.2 B=0.05 A=0.2 A=0.2 B=0.02 A=0.2 A=0.2 B=0.05 A=0.2 A=0.2 B=0.02 A=0.2 A=0.2 B=0.02 A=0.2 A=0.2 A=0.2 B=0.02 A=0.2 A=0.2 A=0.2 A=0.03 A=0.2 A=0.2 A=0.2 A=0.03 A=0.2 A=0.03 A=0.2 A=0.03 A=0.2 A=0.02 A=0.2 A=0.03 A=0.2 A=0.02 A=0.2 A=0.03 A=0.2 A=0.02 A=0.2 A=0.03 A=0.2 A=0.02 A=0.2 A=0.02 A=0.0 A=0.2 A=0.2 A=0.02 A=0.2 A=0.02 A=0.0 A=0.2 A=0.2 A=0.02 A=0.0 A=0.2 A=0.0 A=0.2 A=0.0 A=0.2 A=0.0 A=0	εuracy rang DC 4HZ 10 99.99HZ 100HZ 10 999.99HZ IRHZ 10 10KHZ 10.00IRHZ 10 10KHZ 10.00IRHZ 10 10KHZ 8MΩ to 200MΩ A=1 B=1 A=6 B=5 A=3 B=2 A=2 B=2 800kΩ to 10MΩ A=0.5 B=0.3 A=0.8 B=1 A=0.5 B=0.3 A=0.5 B=0.3 A=2 B=1 80kΩ to 1MΩ A=0.2 B=0.1 A=0.4 B=0.08 A=0.3 B=0.05 A=0.2 B=0.05	εuracy rang DC 4Hz 10 99.99Hz 100Hz 10 999.99Hz IRHz 10 10KHz 10.00KHz 10.0KHz 10.0KHz 10.0KHz 10.0KHz 10.0KHz 10.0KHz <t< td=""><td>ευταcy rang DC 4HZ 10 99.99HZ 100HZ 10 999.99HZ IRRIZ 10 10RHZ 10.001RHZ 10 10RHZ 10.001RZ 10.001RZ 10.001RZ 10.001RZ 10.001</td><td>εuracy rang DC 4HZ to 999.99HZ IOUHZ to 999.99HZ IRRZ to TOKHZ IOUGRRZ to TOKHZ to TOKHZ IOUGRRZ to TOKHZ to TOKHZ IOUGRRZ to TOKHZ IOUGRZ to TOKHZ IOUGRZ to TOKHZ IOUGRZ to TOKHZ</td></t<>	ευταcy rang DC 4HZ 10 99.99HZ 100HZ 10 999.99HZ IRRIZ 10 10RHZ 10.001RHZ 10 10RHZ 10.001RZ 10.001RZ 10.001RZ 10.001RZ 10.001	εuracy rang DC 4HZ to 999.99HZ IOUHZ to 999.99HZ IRRZ to TOKHZ IOUGRRZ to TOKHZ to TOKHZ IOUGRRZ to TOKHZ to TOKHZ IOUGRRZ to TOKHZ IOUGRZ to TOKHZ IOUGRZ to TOKHZ IOUGRZ to TOKHZ

Method of determining basic accuracy

- Calculate the basic accuracy from the sample impedance, measurement range, and measurement frequency and the corresponding basic accuracy A and coefficient B from the table above.
- \bullet The calculation expression to use differs for each of the 1 $k\Omega$ range and above and 100 Ω range and below.
- For C and L, obtain basic accuracy A and coefficient B by determining the measurement range from the actual measurement value of impedance or the approximate impedance value calculated with the following expression.

$$Zx (\Omega) \approx \omega L (H) (\theta \approx 90^{\circ})$$

 $\approx \frac{1}{\omega C (F)} (\theta \approx -90^{\circ})$

 \approx R (Ω) ($\theta \approx 0^{\circ}$) (ω : 2 x π x Measurement frequency [Hz])

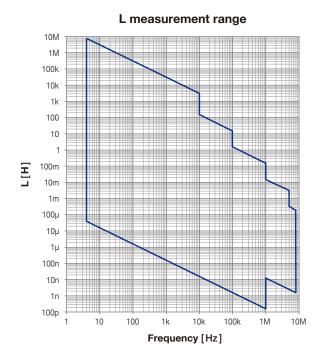
Calculation example

Impedance Zx of sample: 500 Ω (actual measurement value) Measurement conditions: When frequency 10 kHz and range 1 kΩ

Insert coefficient A = 0.2 and coefficient B = 0.02 for the Z basic accuracy from the table above into the expression.

Z basic accuracy =
$$0.2 + 0.02 \times \left| \frac{10 \times 500}{10^3} - 1 \right| = 0.28 \ (\pm \% rdg.)$$

Similarly, insert coefficient A = 0.1 and coefficient B = 0.02 for the θ basic accuracy, as follows:


$$\theta$$
 basic accuracy = 0.1 + 0.02 x $\left| \frac{10 \times 500}{10^3} - 1 \right| = 0.18$ (± deg.)

Guaranteed accuracy measurement level range

The range of measurement levels for which accuracy is guaranteed varies with the setting conditions.

	•			•	The range o	i illoadaloilloilt lovolo	ioi willon accaracy is	guarantoou vanoo iii	in the setting condition
Range	Sample's impedance	DC	4 Hz to 99.99 Hz	100 Hz to 999.99 Hz	1 kHz to 10 kHz	10.001 Hz to 100 kHz	100.01 kHz to 1 MHz	1.0001 MHz to 5 MHz	5.0001 MHz to 8 MHz
100 MΩ	8 MΩ to 200 MΩ								
10 ΜΩ	10 MΩ to 100 MΩ			0.101 V to 5 V					
10 1012	800 kΩ to 10 MΩ			0.101 V tO 5 V		0.501 V to 5 V			
1 ΜΩ	1 MΩ to 10 MΩ					0.501 V 10 5 V		_	
1 10122	$80~\text{k}\Omega$ to $1~\text{M}\Omega$			0.050 V to 5 V		0.101 V to 5 V	0.501 V to 5 V		
100 kΩ	100 k Ω to 1 M Ω			0.030 V to 5 V		0.101 V 10 5 V	0.501 V t0 5 V		_
100 K22	8 kΩ to 100 kΩ	(ed)						0.101 V to 1 V	
10 kΩ	10 kΩ to 100 kΩ	€					0.050 V to 5 V	0.101 V to 1 V	
10 K12	800 Ω to 10 kΩ] ≥	-	0.010 V to 5 V			0.050 V 10 5 V		
1 kΩ	1 kΩ to 10 kΩ			0.010	V 10 3 V			0.050 V to 1 V	0.101 V to 1 V
1 K12	80 Ω to 1 kΩ							0.030 V to 1 V	0.101 V to 1 V
100 Ω	8 Ω to 100 Ω								
10 Ω	$800\text{m}\Omega$ to 10Ω			0.050	V to 5 V			0.101	V to 1 V
1 Ω	80 m Ω to 1 Ω			0.050	V 10 5 V		0.101 V to 5 V	0.501	V to 1 V
$100\ m\Omega$	1 m Ω to 100 m Ω			0.101	V to 5 V		0.501 V to 5 V		

Measurable ranges

C measurement range 100 10 100m 10m 1m 100u 10µ 1μ 100n 10n 1n 100p 10p 1p 100f 10f 100 10M Frequency [Hz]

This product is not supplied with measurement probes or test fixtures. Please select and purchase the measurement probe or test fixture options appropriate for your application separately. All probes are constructed with a 1.50-2V coaxial cable. For an RS-232C connection: A crossover cable for interconnection can be used. You can use the RS-232C CABLE 9637 without hardware flow control.

Model: LCR METER IM3536

Model No. (Order Code) (Note)

IM3536

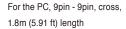
Accessories: Power cord $\times 1$, Instruction manual $\times 1$, LCR application disc (Communications user manual) $\times 1$

Free software for calculating accuracy

(LCR application disc)

Automatically calculate measurement accuracy based on user-entered measurement conditions and measurement results. Free download from the Hioki website.

Options


RS-232C CABLE 9637

GP-IB CONNECTOR CABLE 9151-02

DC BIAS VOLTAGE UNIT 9268-10

DC BIAS CURRENT UNIT 9269-10

2 m (6.56 ft) length

Measurement frequency range: 40 Hz to 8 MHz Maximum applied voltage: ±40 V DC

Measurement frequency range: 40 Hz to 2 MHz Maximum applied current: 2 A DC

 * An internal $300\mu H$ inductance is connected in parallel to the DUT.

Probes and Test Fixtures for Lead Components

4-TERMINAL PROBE L2000

Measurable range: DC to 8 MHz Measurable terminal diameter: 0.3 mm (0.01 in) to 5 mm (0.2 in) Cord length: 1 m (3.28 ft)

4-TERMINAL PROBE 9140-10

Measurable range: DC to 200 kHz Measurable terminal diameter: 0.3 mm (0.01 in) to 5 mm (0.2 in) Cord length: 1 m (3.28 ft)

TEST FIXTURE 9262

Measurable range: DC to 8 MHz Measurable terminal diameter: 0.3 mm (0.01 in) to 2 mm (0.08 in) Direct connection type

TEST FIXTURE 9261-10

Measurable range: DC to 8 MHz Measurable terminal diameter: 0.3 mm (0.01 in) to 1.5 mm (0.06 in) Cord length: 1 m (3.28 ft)

Test Fixtures for SMDs

4-TERMINAL PROBE 9500-10

Measurable range: DC to 200 kHz Measurable terminal diameter: 0.3 mm (0.01 in) to 2 mm (0.08 in) Cord length: 1 m (3.28 ft)

SMD TEST FIXTURE 9263

Measurable range: DC to 8 MHz For SMD with electrodes on side Measurable sample sizes: 0805 to 2220 (EIA) 2012 to 5750 (JIS) Direct connection type

SMD TEST FIXTURE 9699

Measurable range: DC to 120 MHz For SMD with electrodes on bottom Measurable sample sizes: 0608 to 0805 (EIA) 1608 to 2012 (JIS) Direct connection type

SMD TEST FIXTURE 9677

Measurable range: DC to 120 MHz For SMD with electrodes on side Measurable sample sizes: 0402 to 0603 (EIA) 1005 to 1608 (JIS) Direct connection type

SMD TEST FIXTURE IM9110*

Measurable range: DC to 1 MHz For SMD with electrodes on side Measurable sample sizes: 008004 (EIA), 0201 (JIS) Please contact Hioki for information about other sizes. Direct connection type

SMD TEST FIXTURE IM9100*

Measurable range: DC to 8 MHz For SMD with electrodes on bottom Measurable sample sizes: 01005 to 0402 (EIA) 0402 to 1005 (JIS) Direct connection type

PINCHER PROBE L2001*

Measurable range: DC to 8 MHz Replaceable tips Measurable sample sizes: IM9901: 0603 to 2220 (EIA) 1608 to 5750 (JIS) 0603 to 5750 (JIS)

IM9902: 0201 to 2220 (EIA) Cord length: Approx. 730 mm (28.74 in) *Ships standard with one set of IM9901

Options for L2001 Replaceable contact tips

CONTACT TIPS

*For more information, please see individual product catalogs.

LCR Meter Series Full Product Lineup

			•								
Model	Measurement (Basic valu		Measurement frequency range								
(Order Code)				Applicati	ons and m	neasurement	object				
LCR METER		1ms	DC O	4Hz				8MHz			
IM3536			General-purpose LCR meter up to 8 MHz Measure electronic components such as capacitors and inductors								
	TO BEEN	2ms	DC 1mHz		nto oden do	сарасного апа	200kHz				
LCR METER IM3533			Canable of an	asial massuran	agenta of tran	oformore includ	ing turn ratio an	d mutual			
	IM3533 IM3533-01		inductance				vith sweep meas				
LCR METER IM3523		2ms	DC	40Hz			200kHz				
	_		automated ma	ichinery SR measurem		·	es including inte	-			
LCR HITESTER		5ms			120Hz	1kHz					
3511 -50			Compact LCR meter with single function For production lines of aluminum electrolytic capacitors								
C METER		1.5ms				1kHz	1MHz				
3506-10			C meter for low-capacity capacitors For production of MLCC and film capacitors								
C HiTESTER 3504		2ms			120Hz	1kHz					
	3504-40 3504-50 3504-60		C meter for large-capacity MLCCs For sorting machines of large-capacity MLCCs (3504-50/60) and taping machines (3504-40)								
	-										
IMPEDANCE ANALYZER		0.5ms					1MHz	300M			
IM7580A	<u> </u>		High-frequency measurement up to 300 MHz Ideal for production lines of ferrite beads and inductors								
IMPEDANCE ANALYZER IM3570		0.5ms	 	4Hz			Ę	5MHz			
			LCR meter integrated with impedance analyzer Measure the frequency characteristics of piezo-electric devices, functional polymer capacitors, and power inductors								
CHEMICAL IMPEDANCE ANALYZER IM3590		2ms	DC 1mHz				200kHz				
	-						nd equivalent-circ d electric double-				

HIOKI E.E. CORPORATION

HEADQUARTERS 81 Koizumi Ueda, Nagano 386-1192 Japan www.hioki.com

HIOKI USA CORPORATION
TEL +1-609-409-9109 FAX +1-609-409-9108

HIOKI (Shanghai) SALES & TRADING CO., LTD. TEL +86-21-6391-0090/0092 FAX +86-21-6391-0360

DISTRIBUTED BY

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies.

info@hioki.com.cn / www.hioki.cn

HIOKI SINGAPORE PTE.LTD. TEL +65-6634-7677 FAX +65-6634-7477 info-sg@hioki.com.sg / www.hioki.com.sg

HIOKI KOREA CO., LTD. TEL +82-2-2183-8847 FAX +82-2-2183-3360 info-kr@hioki.co.jp / www.hiokikorea.com

HIOKI EUROPE GmbH TEL +49-6173-3234063 FAX +49-6173-3234064