## **LAT-C** Leaf-&-Air-Temperature (Conifer)





leaf temperature sensor type  $\Delta$ LA-C on Norway spruce

LAT-C (Leaf-&-Air-Temperature The **C**onifer type) is a highly precise sensor for continuous measurements of needle surface and ambient air temperatures. Absolute temperature (Tair) air is measured via a highly precise micro thermistor probe, while the difference temperature between ambient air and needle surface ( $\Delta T$ ) is captured by means of a very thin thermopile (10-fold). Designed for conifer needles, the ultralight-weight sensor, with its multiple measurement points, is directly attached to several different needles, providing a spatially integrative temperature signal.

| Name                                                                       | LAT-C : Leaf-&-Air Temperature Sensor, conifer type (*)                                                                                                                                                                    |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application position, suitable for leaf size                               | Needle surface, needle length > 3mm                                                                                                                                                                                        |
| Range of the sensor<br>- thermopile (∆Tleaf-to-air)<br>- thermistor (Tair) | ΔT = +/- 20°C<br>Tair = -40 to 125°C                                                                                                                                                                                       |
| Accuracy<br>- thermopile (∆Tleaf-to-air)<br>- thermistor (Tair)            | CR1000: +/-(0.06%*reading+0.01°C)<br>CR1000: +/- 0.2 °C                                                                                                                                                                    |
| Resolution<br>- thermopile (∆Tleaf-to-air)                                 | Theoretically infinite, depends on data logger. (e.g. CR1000-Logger with approx. 14 bits within +/- 7.5 mV: 0.0025°C)                                                                                                      |
| - thermistor (Tair)                                                        | Theoretically infinite, depends on data logger (e.g. CR1000-Logger with approx. 14 bits within +/- 2500mV: 0.05°C)                                                                                                         |
| Size and weight                                                            | Length of thermopile 10 cm, ca. 0.5 g                                                                                                                                                                                      |
| Output signal type<br>- thermopile (∆Tleaf-to-air)<br>- thermistor (Tair)  | At a $\Delta T$ range of +/- 20°C signal ranges within ± 8.5 mV electrical resistance ( $\Omega$ ), or voltage (mV) when using a bridge-circuit (bridge-circuit with 20 k $\Omega$ resistor included in standard delivery) |
| Power supply<br>- thermopile (∆Tleaf-to-air)<br>- thermistor (Tair)        | Not required<br>Excitation voltage Vex usually 2500 mV                                                                                                                                                                     |
| Operating conditions                                                       | Air temperature: -25 to 70 °C, air humidity: 0 to 100%                                                                                                                                                                     |

## **Technical Specifications**

(\*) patent pending